| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0subm.z |  |-  .0. = ( 0g ` G ) | 
						
							| 2 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 3 | 2 1 | mndidcl |  |-  ( G e. Mnd -> .0. e. ( Base ` G ) ) | 
						
							| 4 | 3 | snssd |  |-  ( G e. Mnd -> { .0. } C_ ( Base ` G ) ) | 
						
							| 5 | 1 | fvexi |  |-  .0. e. _V | 
						
							| 6 | 5 | snid |  |-  .0. e. { .0. } | 
						
							| 7 | 6 | a1i |  |-  ( G e. Mnd -> .0. e. { .0. } ) | 
						
							| 8 |  | velsn |  |-  ( a e. { .0. } <-> a = .0. ) | 
						
							| 9 |  | velsn |  |-  ( b e. { .0. } <-> b = .0. ) | 
						
							| 10 | 8 9 | anbi12i |  |-  ( ( a e. { .0. } /\ b e. { .0. } ) <-> ( a = .0. /\ b = .0. ) ) | 
						
							| 11 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 12 | 2 11 1 | mndlid |  |-  ( ( G e. Mnd /\ .0. e. ( Base ` G ) ) -> ( .0. ( +g ` G ) .0. ) = .0. ) | 
						
							| 13 | 3 12 | mpdan |  |-  ( G e. Mnd -> ( .0. ( +g ` G ) .0. ) = .0. ) | 
						
							| 14 |  | ovex |  |-  ( .0. ( +g ` G ) .0. ) e. _V | 
						
							| 15 | 14 | elsn |  |-  ( ( .0. ( +g ` G ) .0. ) e. { .0. } <-> ( .0. ( +g ` G ) .0. ) = .0. ) | 
						
							| 16 | 13 15 | sylibr |  |-  ( G e. Mnd -> ( .0. ( +g ` G ) .0. ) e. { .0. } ) | 
						
							| 17 |  | oveq12 |  |-  ( ( a = .0. /\ b = .0. ) -> ( a ( +g ` G ) b ) = ( .0. ( +g ` G ) .0. ) ) | 
						
							| 18 | 17 | eleq1d |  |-  ( ( a = .0. /\ b = .0. ) -> ( ( a ( +g ` G ) b ) e. { .0. } <-> ( .0. ( +g ` G ) .0. ) e. { .0. } ) ) | 
						
							| 19 | 16 18 | syl5ibrcom |  |-  ( G e. Mnd -> ( ( a = .0. /\ b = .0. ) -> ( a ( +g ` G ) b ) e. { .0. } ) ) | 
						
							| 20 | 10 19 | biimtrid |  |-  ( G e. Mnd -> ( ( a e. { .0. } /\ b e. { .0. } ) -> ( a ( +g ` G ) b ) e. { .0. } ) ) | 
						
							| 21 | 20 | ralrimivv |  |-  ( G e. Mnd -> A. a e. { .0. } A. b e. { .0. } ( a ( +g ` G ) b ) e. { .0. } ) | 
						
							| 22 | 2 1 11 | issubm |  |-  ( G e. Mnd -> ( { .0. } e. ( SubMnd ` G ) <-> ( { .0. } C_ ( Base ` G ) /\ .0. e. { .0. } /\ A. a e. { .0. } A. b e. { .0. } ( a ( +g ` G ) b ) e. { .0. } ) ) ) | 
						
							| 23 | 4 7 21 22 | mpbir3and |  |-  ( G e. Mnd -> { .0. } e. ( SubMnd ` G ) ) |