| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssid |  |-  { (/) } C_ { (/) } | 
						
							| 2 |  | fvex |  |-  ( EndoFMnd ` (/) ) e. _V | 
						
							| 3 |  | p0ex |  |-  { (/) } e. _V | 
						
							| 4 |  | eqid |  |-  ( SymGrp ` (/) ) = ( SymGrp ` (/) ) | 
						
							| 5 |  | symgbas0 |  |-  ( Base ` ( SymGrp ` (/) ) ) = { (/) } | 
						
							| 6 | 5 | eqcomi |  |-  { (/) } = ( Base ` ( SymGrp ` (/) ) ) | 
						
							| 7 |  | eqid |  |-  ( EndoFMnd ` (/) ) = ( EndoFMnd ` (/) ) | 
						
							| 8 | 4 6 7 | symgressbas |  |-  ( SymGrp ` (/) ) = ( ( EndoFMnd ` (/) ) |`s { (/) } ) | 
						
							| 9 |  | efmndbas0 |  |-  ( Base ` ( EndoFMnd ` (/) ) ) = { (/) } | 
						
							| 10 | 9 | eqcomi |  |-  { (/) } = ( Base ` ( EndoFMnd ` (/) ) ) | 
						
							| 11 | 8 10 | ressid2 |  |-  ( ( { (/) } C_ { (/) } /\ ( EndoFMnd ` (/) ) e. _V /\ { (/) } e. _V ) -> ( SymGrp ` (/) ) = ( EndoFMnd ` (/) ) ) | 
						
							| 12 | 1 2 3 11 | mp3an |  |-  ( SymGrp ` (/) ) = ( EndoFMnd ` (/) ) | 
						
							| 13 | 12 | eqcomi |  |-  ( EndoFMnd ` (/) ) = ( SymGrp ` (/) ) |