Metamath Proof Explorer


Theorem 0tie0

Description: 0 times _i equals 0. (Contributed by SN, 25-Apr-2025)

Ref Expression
Assertion 0tie0
|- ( 0 x. _i ) = 0

Proof

Step Hyp Ref Expression
1 ax-icn
 |-  _i e. CC
2 0cn
 |-  0 e. CC
3 it0e0
 |-  ( _i x. 0 ) = 0
4 1 2 3 mulcomli
 |-  ( 0 x. _i ) = 0