| Step | Hyp | Ref | Expression | 
						
							| 1 |  | olc |  |-  ( J = { (/) } -> ( J = (/) \/ J = { (/) } ) ) | 
						
							| 2 |  | 0opn |  |-  ( J e. Top -> (/) e. J ) | 
						
							| 3 |  | n0i |  |-  ( (/) e. J -> -. J = (/) ) | 
						
							| 4 | 2 3 | syl |  |-  ( J e. Top -> -. J = (/) ) | 
						
							| 5 | 4 | pm2.21d |  |-  ( J e. Top -> ( J = (/) -> J = { (/) } ) ) | 
						
							| 6 |  | idd |  |-  ( J e. Top -> ( J = { (/) } -> J = { (/) } ) ) | 
						
							| 7 | 5 6 | jaod |  |-  ( J e. Top -> ( ( J = (/) \/ J = { (/) } ) -> J = { (/) } ) ) | 
						
							| 8 | 1 7 | impbid2 |  |-  ( J e. Top -> ( J = { (/) } <-> ( J = (/) \/ J = { (/) } ) ) ) | 
						
							| 9 |  | uni0b |  |-  ( U. J = (/) <-> J C_ { (/) } ) | 
						
							| 10 |  | sssn |  |-  ( J C_ { (/) } <-> ( J = (/) \/ J = { (/) } ) ) | 
						
							| 11 | 9 10 | bitr2i |  |-  ( ( J = (/) \/ J = { (/) } ) <-> U. J = (/) ) | 
						
							| 12 | 8 11 | bitr2di |  |-  ( J e. Top -> ( U. J = (/) <-> J = { (/) } ) ) |