Step |
Hyp |
Ref |
Expression |
1 |
|
0wlk.v |
|- V = ( Vtx ` G ) |
2 |
1
|
0wlkon |
|- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> (/) ( N ( WalksOn ` G ) N ) P ) |
3 |
|
simpl |
|- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> P : ( 0 ... 0 ) --> V ) |
4 |
1
|
0wlkonlem1 |
|- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> ( N e. V /\ N e. V ) ) |
5 |
1
|
1vgrex |
|- ( N e. V -> G e. _V ) |
6 |
5
|
adantr |
|- ( ( N e. V /\ N e. V ) -> G e. _V ) |
7 |
1
|
0trl |
|- ( G e. _V -> ( (/) ( Trails ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |
8 |
4 6 7
|
3syl |
|- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> ( (/) ( Trails ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |
9 |
3 8
|
mpbird |
|- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> (/) ( Trails ` G ) P ) |
10 |
|
0ex |
|- (/) e. _V |
11 |
10
|
a1i |
|- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> (/) e. _V ) |
12 |
1
|
0wlkonlem2 |
|- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> P e. ( V ^pm ( 0 ... 0 ) ) ) |
13 |
1
|
istrlson |
|- ( ( ( N e. V /\ N e. V ) /\ ( (/) e. _V /\ P e. ( V ^pm ( 0 ... 0 ) ) ) ) -> ( (/) ( N ( TrailsOn ` G ) N ) P <-> ( (/) ( N ( WalksOn ` G ) N ) P /\ (/) ( Trails ` G ) P ) ) ) |
14 |
4 11 12 13
|
syl12anc |
|- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> ( (/) ( N ( TrailsOn ` G ) N ) P <-> ( (/) ( N ( WalksOn ` G ) N ) P /\ (/) ( Trails ` G ) P ) ) ) |
15 |
2 9 14
|
mpbir2and |
|- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> (/) ( N ( TrailsOn ` G ) N ) P ) |