Metamath Proof Explorer


Theorem 0trrel

Description: The empty class is a transitive relation. (Contributed by RP, 24-Dec-2019)

Ref Expression
Assertion 0trrel
|- ( (/) o. (/) ) C_ (/)

Proof

Step Hyp Ref Expression
1 co01
 |-  ( (/) o. (/) ) = (/)
2 1 eqimssi
 |-  ( (/) o. (/) ) C_ (/)