Step |
Hyp |
Ref |
Expression |
1 |
|
ral0 |
|- A. x e. (/) ( ~P x C_ (/) /\ ~P x e. (/) ) |
2 |
|
elsni |
|- ( x e. { (/) } -> x = (/) ) |
3 |
|
0ex |
|- (/) e. _V |
4 |
3
|
enref |
|- (/) ~~ (/) |
5 |
|
breq1 |
|- ( x = (/) -> ( x ~~ (/) <-> (/) ~~ (/) ) ) |
6 |
4 5
|
mpbiri |
|- ( x = (/) -> x ~~ (/) ) |
7 |
6
|
orcd |
|- ( x = (/) -> ( x ~~ (/) \/ x e. (/) ) ) |
8 |
2 7
|
syl |
|- ( x e. { (/) } -> ( x ~~ (/) \/ x e. (/) ) ) |
9 |
|
pw0 |
|- ~P (/) = { (/) } |
10 |
8 9
|
eleq2s |
|- ( x e. ~P (/) -> ( x ~~ (/) \/ x e. (/) ) ) |
11 |
10
|
rgen |
|- A. x e. ~P (/) ( x ~~ (/) \/ x e. (/) ) |
12 |
|
eltsk2g |
|- ( (/) e. _V -> ( (/) e. Tarski <-> ( A. x e. (/) ( ~P x C_ (/) /\ ~P x e. (/) ) /\ A. x e. ~P (/) ( x ~~ (/) \/ x e. (/) ) ) ) ) |
13 |
3 12
|
ax-mp |
|- ( (/) e. Tarski <-> ( A. x e. (/) ( ~P x C_ (/) /\ ~P x e. (/) ) /\ A. x e. ~P (/) ( x ~~ (/) \/ x e. (/) ) ) ) |
14 |
1 11 13
|
mpbir2an |
|- (/) e. Tarski |