Metamath Proof Explorer


Theorem 0tsk

Description: The empty set is a (transitive) Tarski class. (Contributed by FL, 30-Dec-2010)

Ref Expression
Assertion 0tsk
|- (/) e. Tarski

Proof

Step Hyp Ref Expression
1 ral0
 |-  A. x e. (/) ( ~P x C_ (/) /\ ~P x e. (/) )
2 elsni
 |-  ( x e. { (/) } -> x = (/) )
3 0ex
 |-  (/) e. _V
4 3 enref
 |-  (/) ~~ (/)
5 breq1
 |-  ( x = (/) -> ( x ~~ (/) <-> (/) ~~ (/) ) )
6 4 5 mpbiri
 |-  ( x = (/) -> x ~~ (/) )
7 6 orcd
 |-  ( x = (/) -> ( x ~~ (/) \/ x e. (/) ) )
8 2 7 syl
 |-  ( x e. { (/) } -> ( x ~~ (/) \/ x e. (/) ) )
9 pw0
 |-  ~P (/) = { (/) }
10 8 9 eleq2s
 |-  ( x e. ~P (/) -> ( x ~~ (/) \/ x e. (/) ) )
11 10 rgen
 |-  A. x e. ~P (/) ( x ~~ (/) \/ x e. (/) )
12 eltsk2g
 |-  ( (/) e. _V -> ( (/) e. Tarski <-> ( A. x e. (/) ( ~P x C_ (/) /\ ~P x e. (/) ) /\ A. x e. ~P (/) ( x ~~ (/) \/ x e. (/) ) ) ) )
13 3 12 ax-mp
 |-  ( (/) e. Tarski <-> ( A. x e. (/) ( ~P x C_ (/) /\ ~P x e. (/) ) /\ A. x e. ~P (/) ( x ~~ (/) \/ x e. (/) ) ) )
14 1 11 13 mpbir2an
 |-  (/) e. Tarski