Step |
Hyp |
Ref |
Expression |
1 |
|
uhgr0vb |
|- ( ( G e. UHGraph /\ ( Vtx ` G ) = (/) ) -> ( G e. UHGraph <-> ( iEdg ` G ) = (/) ) ) |
2 |
1
|
biimpd |
|- ( ( G e. UHGraph /\ ( Vtx ` G ) = (/) ) -> ( G e. UHGraph -> ( iEdg ` G ) = (/) ) ) |
3 |
2
|
ex |
|- ( G e. UHGraph -> ( ( Vtx ` G ) = (/) -> ( G e. UHGraph -> ( iEdg ` G ) = (/) ) ) ) |
4 |
3
|
pm2.43a |
|- ( G e. UHGraph -> ( ( Vtx ` G ) = (/) -> ( iEdg ` G ) = (/) ) ) |
5 |
4
|
imp |
|- ( ( G e. UHGraph /\ ( Vtx ` G ) = (/) ) -> ( iEdg ` G ) = (/) ) |
6 |
|
0vtxrusgr |
|- ( ( G e. UHGraph /\ ( Vtx ` G ) = (/) /\ ( iEdg ` G ) = (/) ) -> A. k e. NN0* G RegUSGraph k ) |
7 |
5 6
|
mpd3an3 |
|- ( ( G e. UHGraph /\ ( Vtx ` G ) = (/) ) -> A. k e. NN0* G RegUSGraph k ) |