| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							3simpa | 
							 |-  ( ( G e. W /\ S e. UHGraph /\ ( Vtx ` S ) = (/) ) -> ( G e. W /\ S e. UHGraph ) )  | 
						
						
							| 2 | 
							
								
							 | 
							0ss | 
							 |-  (/) C_ ( Vtx ` G )  | 
						
						
							| 3 | 
							
								
							 | 
							sseq1 | 
							 |-  ( ( Vtx ` S ) = (/) -> ( ( Vtx ` S ) C_ ( Vtx ` G ) <-> (/) C_ ( Vtx ` G ) ) )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							mpbiri | 
							 |-  ( ( Vtx ` S ) = (/) -> ( Vtx ` S ) C_ ( Vtx ` G ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							3ad2ant3 | 
							 |-  ( ( G e. W /\ S e. UHGraph /\ ( Vtx ` S ) = (/) ) -> ( Vtx ` S ) C_ ( Vtx ` G ) )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							 |-  ( iEdg ` S ) = ( iEdg ` S )  | 
						
						
							| 7 | 
							
								6
							 | 
							uhgrfun | 
							 |-  ( S e. UHGraph -> Fun ( iEdg ` S ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							3ad2ant2 | 
							 |-  ( ( G e. W /\ S e. UHGraph /\ ( Vtx ` S ) = (/) ) -> Fun ( iEdg ` S ) )  | 
						
						
							| 9 | 
							
								
							 | 
							edgval | 
							 |-  ( Edg ` S ) = ran ( iEdg ` S )  | 
						
						
							| 10 | 
							
								
							 | 
							uhgr0vb | 
							 |-  ( ( S e. UHGraph /\ ( Vtx ` S ) = (/) ) -> ( S e. UHGraph <-> ( iEdg ` S ) = (/) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							rneq | 
							 |-  ( ( iEdg ` S ) = (/) -> ran ( iEdg ` S ) = ran (/) )  | 
						
						
							| 12 | 
							
								
							 | 
							rn0 | 
							 |-  ran (/) = (/)  | 
						
						
							| 13 | 
							
								11 12
							 | 
							eqtrdi | 
							 |-  ( ( iEdg ` S ) = (/) -> ran ( iEdg ` S ) = (/) )  | 
						
						
							| 14 | 
							
								10 13
							 | 
							biimtrdi | 
							 |-  ( ( S e. UHGraph /\ ( Vtx ` S ) = (/) ) -> ( S e. UHGraph -> ran ( iEdg ` S ) = (/) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							ex | 
							 |-  ( S e. UHGraph -> ( ( Vtx ` S ) = (/) -> ( S e. UHGraph -> ran ( iEdg ` S ) = (/) ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							pm2.43a | 
							 |-  ( S e. UHGraph -> ( ( Vtx ` S ) = (/) -> ran ( iEdg ` S ) = (/) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							a1i | 
							 |-  ( G e. W -> ( S e. UHGraph -> ( ( Vtx ` S ) = (/) -> ran ( iEdg ` S ) = (/) ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							3imp | 
							 |-  ( ( G e. W /\ S e. UHGraph /\ ( Vtx ` S ) = (/) ) -> ran ( iEdg ` S ) = (/) )  | 
						
						
							| 19 | 
							
								9 18
							 | 
							eqtrid | 
							 |-  ( ( G e. W /\ S e. UHGraph /\ ( Vtx ` S ) = (/) ) -> ( Edg ` S ) = (/) )  | 
						
						
							| 20 | 
							
								
							 | 
							egrsubgr | 
							 |-  ( ( ( G e. W /\ S e. UHGraph ) /\ ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( Fun ( iEdg ` S ) /\ ( Edg ` S ) = (/) ) ) -> S SubGraph G )  | 
						
						
							| 21 | 
							
								1 5 8 19 20
							 | 
							syl112anc | 
							 |-  ( ( G e. W /\ S e. UHGraph /\ ( Vtx ` S ) = (/) ) -> S SubGraph G )  |