| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0unit.1 |
|- U = ( Unit ` R ) |
| 2 |
|
0unit.2 |
|- .0. = ( 0g ` R ) |
| 3 |
|
0unit.3 |
|- .1. = ( 1r ` R ) |
| 4 |
|
eqid |
|- ( invr ` R ) = ( invr ` R ) |
| 5 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 6 |
1 4 5 3
|
unitrinv |
|- ( ( R e. Ring /\ .0. e. U ) -> ( .0. ( .r ` R ) ( ( invr ` R ) ` .0. ) ) = .1. ) |
| 7 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 8 |
1 4 7
|
ringinvcl |
|- ( ( R e. Ring /\ .0. e. U ) -> ( ( invr ` R ) ` .0. ) e. ( Base ` R ) ) |
| 9 |
7 5 2
|
ringlz |
|- ( ( R e. Ring /\ ( ( invr ` R ) ` .0. ) e. ( Base ` R ) ) -> ( .0. ( .r ` R ) ( ( invr ` R ) ` .0. ) ) = .0. ) |
| 10 |
8 9
|
syldan |
|- ( ( R e. Ring /\ .0. e. U ) -> ( .0. ( .r ` R ) ( ( invr ` R ) ` .0. ) ) = .0. ) |
| 11 |
6 10
|
eqtr3d |
|- ( ( R e. Ring /\ .0. e. U ) -> .1. = .0. ) |
| 12 |
|
simpr |
|- ( ( R e. Ring /\ .1. = .0. ) -> .1. = .0. ) |
| 13 |
1 3
|
1unit |
|- ( R e. Ring -> .1. e. U ) |
| 14 |
13
|
adantr |
|- ( ( R e. Ring /\ .1. = .0. ) -> .1. e. U ) |
| 15 |
12 14
|
eqeltrrd |
|- ( ( R e. Ring /\ .1. = .0. ) -> .0. e. U ) |
| 16 |
11 15
|
impbida |
|- ( R e. Ring -> ( .0. e. U <-> .1. = .0. ) ) |