Step |
Hyp |
Ref |
Expression |
1 |
|
0unit.1 |
|- U = ( Unit ` R ) |
2 |
|
0unit.2 |
|- .0. = ( 0g ` R ) |
3 |
|
0unit.3 |
|- .1. = ( 1r ` R ) |
4 |
|
eqid |
|- ( invr ` R ) = ( invr ` R ) |
5 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
6 |
1 4 5 3
|
unitrinv |
|- ( ( R e. Ring /\ .0. e. U ) -> ( .0. ( .r ` R ) ( ( invr ` R ) ` .0. ) ) = .1. ) |
7 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
8 |
1 4 7
|
ringinvcl |
|- ( ( R e. Ring /\ .0. e. U ) -> ( ( invr ` R ) ` .0. ) e. ( Base ` R ) ) |
9 |
7 5 2
|
ringlz |
|- ( ( R e. Ring /\ ( ( invr ` R ) ` .0. ) e. ( Base ` R ) ) -> ( .0. ( .r ` R ) ( ( invr ` R ) ` .0. ) ) = .0. ) |
10 |
8 9
|
syldan |
|- ( ( R e. Ring /\ .0. e. U ) -> ( .0. ( .r ` R ) ( ( invr ` R ) ` .0. ) ) = .0. ) |
11 |
6 10
|
eqtr3d |
|- ( ( R e. Ring /\ .0. e. U ) -> .1. = .0. ) |
12 |
|
simpr |
|- ( ( R e. Ring /\ .1. = .0. ) -> .1. = .0. ) |
13 |
1 3
|
1unit |
|- ( R e. Ring -> .1. e. U ) |
14 |
13
|
adantr |
|- ( ( R e. Ring /\ .1. = .0. ) -> .1. e. U ) |
15 |
12 14
|
eqeltrrd |
|- ( ( R e. Ring /\ .1. = .0. ) -> .0. e. U ) |
16 |
11 15
|
impbida |
|- ( R e. Ring -> ( .0. e. U <-> .1. = .0. ) ) |