Metamath Proof Explorer


Theorem 0vconngr

Description: A graph without vertices is connected. (Contributed by Alexander van der Vekens, 2-Dec-2017) (Revised by AV, 15-Feb-2021)

Ref Expression
Assertion 0vconngr
|- ( ( G e. W /\ ( Vtx ` G ) = (/) ) -> G e. ConnGraph )

Proof

Step Hyp Ref Expression
1 rzal
 |-  ( ( Vtx ` G ) = (/) -> A. k e. ( Vtx ` G ) A. n e. ( Vtx ` G ) E. f E. p f ( k ( PathsOn ` G ) n ) p )
2 1 adantl
 |-  ( ( G e. W /\ ( Vtx ` G ) = (/) ) -> A. k e. ( Vtx ` G ) A. n e. ( Vtx ` G ) E. f E. p f ( k ( PathsOn ` G ) n ) p )
3 eqid
 |-  ( Vtx ` G ) = ( Vtx ` G )
4 3 isconngr
 |-  ( G e. W -> ( G e. ConnGraph <-> A. k e. ( Vtx ` G ) A. n e. ( Vtx ` G ) E. f E. p f ( k ( PathsOn ` G ) n ) p ) )
5 4 adantr
 |-  ( ( G e. W /\ ( Vtx ` G ) = (/) ) -> ( G e. ConnGraph <-> A. k e. ( Vtx ` G ) A. n e. ( Vtx ` G ) E. f E. p f ( k ( PathsOn ` G ) n ) p ) )
6 2 5 mpbird
 |-  ( ( G e. W /\ ( Vtx ` G ) = (/) ) -> G e. ConnGraph )