Description: The empty set is a well-ordering of ordinal one. (Contributed by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0we1 | |- (/) We 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | br0 | |- -. (/) (/) (/) |
|
| 2 | rel0 | |- Rel (/) |
|
| 3 | wesn | |- ( Rel (/) -> ( (/) We { (/) } <-> -. (/) (/) (/) ) ) |
|
| 4 | 2 3 | ax-mp | |- ( (/) We { (/) } <-> -. (/) (/) (/) ) |
| 5 | 1 4 | mpbir | |- (/) We { (/) } |
| 6 | df1o2 | |- 1o = { (/) } |
|
| 7 | weeq2 | |- ( 1o = { (/) } -> ( (/) We 1o <-> (/) We { (/) } ) ) |
|
| 8 | 6 7 | ax-mp | |- ( (/) We 1o <-> (/) We { (/) } ) |
| 9 | 5 8 | mpbir | |- (/) We 1o |