| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0wlk.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | eqid |  |-  ( iEdg ` G ) = ( iEdg ` G ) | 
						
							| 3 | 1 2 | iswlkg |  |-  ( G e. U -> ( (/) ( Walks ` G ) P <-> ( (/) e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` (/) ) ) --> V /\ A. k e. ( 0 ..^ ( # ` (/) ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( (/) ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( (/) ` k ) ) ) ) ) ) | 
						
							| 4 |  | ral0 |  |-  A. k e. (/) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( (/) ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( (/) ` k ) ) ) | 
						
							| 5 |  | hash0 |  |-  ( # ` (/) ) = 0 | 
						
							| 6 | 5 | oveq2i |  |-  ( 0 ..^ ( # ` (/) ) ) = ( 0 ..^ 0 ) | 
						
							| 7 |  | fzo0 |  |-  ( 0 ..^ 0 ) = (/) | 
						
							| 8 | 6 7 | eqtri |  |-  ( 0 ..^ ( # ` (/) ) ) = (/) | 
						
							| 9 | 8 | raleqi |  |-  ( A. k e. ( 0 ..^ ( # ` (/) ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( (/) ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( (/) ` k ) ) ) <-> A. k e. (/) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( (/) ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( (/) ` k ) ) ) ) | 
						
							| 10 | 4 9 | mpbir |  |-  A. k e. ( 0 ..^ ( # ` (/) ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( (/) ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( (/) ` k ) ) ) | 
						
							| 11 | 10 | biantru |  |-  ( ( (/) e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` (/) ) ) --> V ) <-> ( ( (/) e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` (/) ) ) --> V ) /\ A. k e. ( 0 ..^ ( # ` (/) ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( (/) ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( (/) ` k ) ) ) ) ) | 
						
							| 12 | 5 | eqcomi |  |-  0 = ( # ` (/) ) | 
						
							| 13 | 12 | oveq2i |  |-  ( 0 ... 0 ) = ( 0 ... ( # ` (/) ) ) | 
						
							| 14 | 13 | feq2i |  |-  ( P : ( 0 ... 0 ) --> V <-> P : ( 0 ... ( # ` (/) ) ) --> V ) | 
						
							| 15 |  | wrd0 |  |-  (/) e. Word dom ( iEdg ` G ) | 
						
							| 16 | 15 | biantrur |  |-  ( P : ( 0 ... ( # ` (/) ) ) --> V <-> ( (/) e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` (/) ) ) --> V ) ) | 
						
							| 17 | 14 16 | bitri |  |-  ( P : ( 0 ... 0 ) --> V <-> ( (/) e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` (/) ) ) --> V ) ) | 
						
							| 18 |  | df-3an |  |-  ( ( (/) e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` (/) ) ) --> V /\ A. k e. ( 0 ..^ ( # ` (/) ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( (/) ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( (/) ` k ) ) ) ) <-> ( ( (/) e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` (/) ) ) --> V ) /\ A. k e. ( 0 ..^ ( # ` (/) ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( (/) ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( (/) ` k ) ) ) ) ) | 
						
							| 19 | 11 17 18 | 3bitr4ri |  |-  ( ( (/) e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` (/) ) ) --> V /\ A. k e. ( 0 ..^ ( # ` (/) ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( (/) ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( (/) ` k ) ) ) ) <-> P : ( 0 ... 0 ) --> V ) | 
						
							| 20 | 3 19 | bitrdi |  |-  ( G e. U -> ( (/) ( Walks ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |