Step |
Hyp |
Ref |
Expression |
1 |
|
0wlk.v |
|- V = ( Vtx ` G ) |
2 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
3 |
1 2
|
iswlkg |
|- ( G e. U -> ( (/) ( Walks ` G ) P <-> ( (/) e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` (/) ) ) --> V /\ A. k e. ( 0 ..^ ( # ` (/) ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( (/) ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( (/) ` k ) ) ) ) ) ) |
4 |
|
ral0 |
|- A. k e. (/) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( (/) ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( (/) ` k ) ) ) |
5 |
|
hash0 |
|- ( # ` (/) ) = 0 |
6 |
5
|
oveq2i |
|- ( 0 ..^ ( # ` (/) ) ) = ( 0 ..^ 0 ) |
7 |
|
fzo0 |
|- ( 0 ..^ 0 ) = (/) |
8 |
6 7
|
eqtri |
|- ( 0 ..^ ( # ` (/) ) ) = (/) |
9 |
8
|
raleqi |
|- ( A. k e. ( 0 ..^ ( # ` (/) ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( (/) ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( (/) ` k ) ) ) <-> A. k e. (/) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( (/) ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( (/) ` k ) ) ) ) |
10 |
4 9
|
mpbir |
|- A. k e. ( 0 ..^ ( # ` (/) ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( (/) ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( (/) ` k ) ) ) |
11 |
10
|
biantru |
|- ( ( (/) e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` (/) ) ) --> V ) <-> ( ( (/) e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` (/) ) ) --> V ) /\ A. k e. ( 0 ..^ ( # ` (/) ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( (/) ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( (/) ` k ) ) ) ) ) |
12 |
5
|
eqcomi |
|- 0 = ( # ` (/) ) |
13 |
12
|
oveq2i |
|- ( 0 ... 0 ) = ( 0 ... ( # ` (/) ) ) |
14 |
13
|
feq2i |
|- ( P : ( 0 ... 0 ) --> V <-> P : ( 0 ... ( # ` (/) ) ) --> V ) |
15 |
|
wrd0 |
|- (/) e. Word dom ( iEdg ` G ) |
16 |
15
|
biantrur |
|- ( P : ( 0 ... ( # ` (/) ) ) --> V <-> ( (/) e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` (/) ) ) --> V ) ) |
17 |
14 16
|
bitri |
|- ( P : ( 0 ... 0 ) --> V <-> ( (/) e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` (/) ) ) --> V ) ) |
18 |
|
df-3an |
|- ( ( (/) e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` (/) ) ) --> V /\ A. k e. ( 0 ..^ ( # ` (/) ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( (/) ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( (/) ` k ) ) ) ) <-> ( ( (/) e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` (/) ) ) --> V ) /\ A. k e. ( 0 ..^ ( # ` (/) ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( (/) ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( (/) ` k ) ) ) ) ) |
19 |
11 17 18
|
3bitr4ri |
|- ( ( (/) e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` (/) ) ) --> V /\ A. k e. ( 0 ..^ ( # ` (/) ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( (/) ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( (/) ` k ) ) ) ) <-> P : ( 0 ... 0 ) --> V ) |
20 |
3 19
|
bitrdi |
|- ( G e. U -> ( (/) ( Walks ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |