Step |
Hyp |
Ref |
Expression |
1 |
|
0wlk.v |
|- V = ( Vtx ` G ) |
2 |
|
simpl |
|- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> P : ( 0 ... 0 ) --> V ) |
3 |
1
|
0wlkonlem1 |
|- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> ( N e. V /\ N e. V ) ) |
4 |
1
|
1vgrex |
|- ( N e. V -> G e. _V ) |
5 |
4
|
adantr |
|- ( ( N e. V /\ N e. V ) -> G e. _V ) |
6 |
1
|
0wlk |
|- ( G e. _V -> ( (/) ( Walks ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |
7 |
3 5 6
|
3syl |
|- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> ( (/) ( Walks ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |
8 |
2 7
|
mpbird |
|- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> (/) ( Walks ` G ) P ) |
9 |
|
simpr |
|- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> ( P ` 0 ) = N ) |
10 |
|
hash0 |
|- ( # ` (/) ) = 0 |
11 |
10
|
fveq2i |
|- ( P ` ( # ` (/) ) ) = ( P ` 0 ) |
12 |
11 9
|
syl5eq |
|- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> ( P ` ( # ` (/) ) ) = N ) |
13 |
|
0ex |
|- (/) e. _V |
14 |
13
|
a1i |
|- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> (/) e. _V ) |
15 |
1
|
0wlkonlem2 |
|- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> P e. ( V ^pm ( 0 ... 0 ) ) ) |
16 |
1
|
iswlkon |
|- ( ( ( N e. V /\ N e. V ) /\ ( (/) e. _V /\ P e. ( V ^pm ( 0 ... 0 ) ) ) ) -> ( (/) ( N ( WalksOn ` G ) N ) P <-> ( (/) ( Walks ` G ) P /\ ( P ` 0 ) = N /\ ( P ` ( # ` (/) ) ) = N ) ) ) |
17 |
3 14 15 16
|
syl12anc |
|- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> ( (/) ( N ( WalksOn ` G ) N ) P <-> ( (/) ( Walks ` G ) P /\ ( P ` 0 ) = N /\ ( P ` ( # ` (/) ) ) = N ) ) ) |
18 |
8 9 12 17
|
mpbir3and |
|- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> (/) ( N ( WalksOn ` G ) N ) P ) |