Step |
Hyp |
Ref |
Expression |
1 |
|
0wlk.v |
|- V = ( Vtx ` G ) |
2 |
|
id |
|- ( P : ( 0 ... 0 ) --> V -> P : ( 0 ... 0 ) --> V ) |
3 |
|
0nn0 |
|- 0 e. NN0 |
4 |
|
0elfz |
|- ( 0 e. NN0 -> 0 e. ( 0 ... 0 ) ) |
5 |
3 4
|
mp1i |
|- ( P : ( 0 ... 0 ) --> V -> 0 e. ( 0 ... 0 ) ) |
6 |
2 5
|
ffvelrnd |
|- ( P : ( 0 ... 0 ) --> V -> ( P ` 0 ) e. V ) |
7 |
6
|
adantr |
|- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> ( P ` 0 ) e. V ) |
8 |
|
eleq1 |
|- ( N = ( P ` 0 ) -> ( N e. V <-> ( P ` 0 ) e. V ) ) |
9 |
8
|
eqcoms |
|- ( ( P ` 0 ) = N -> ( N e. V <-> ( P ` 0 ) e. V ) ) |
10 |
9
|
adantl |
|- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> ( N e. V <-> ( P ` 0 ) e. V ) ) |
11 |
7 10
|
mpbird |
|- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> N e. V ) |
12 |
|
id |
|- ( N e. V -> N e. V ) |
13 |
11 12
|
jccir |
|- ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> ( N e. V /\ N e. V ) ) |