| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0wlk.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | id |  |-  ( P : ( 0 ... 0 ) --> V -> P : ( 0 ... 0 ) --> V ) | 
						
							| 3 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 4 |  | 0elfz |  |-  ( 0 e. NN0 -> 0 e. ( 0 ... 0 ) ) | 
						
							| 5 | 3 4 | mp1i |  |-  ( P : ( 0 ... 0 ) --> V -> 0 e. ( 0 ... 0 ) ) | 
						
							| 6 | 2 5 | ffvelcdmd |  |-  ( P : ( 0 ... 0 ) --> V -> ( P ` 0 ) e. V ) | 
						
							| 7 | 6 | adantr |  |-  ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> ( P ` 0 ) e. V ) | 
						
							| 8 |  | eleq1 |  |-  ( N = ( P ` 0 ) -> ( N e. V <-> ( P ` 0 ) e. V ) ) | 
						
							| 9 | 8 | eqcoms |  |-  ( ( P ` 0 ) = N -> ( N e. V <-> ( P ` 0 ) e. V ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> ( N e. V <-> ( P ` 0 ) e. V ) ) | 
						
							| 11 | 7 10 | mpbird |  |-  ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> N e. V ) | 
						
							| 12 |  | id |  |-  ( N e. V -> N e. V ) | 
						
							| 13 | 11 12 | jccir |  |-  ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) -> ( N e. V /\ N e. V ) ) |