Description: The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of Monk1 p. 37. (Contributed by NM, 4-Jul-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0xp | |- ( (/) X. A ) = (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel | |- -. x e. (/) |
|
| 2 | simprl | |- ( ( z = <. x , y >. /\ ( x e. (/) /\ y e. A ) ) -> x e. (/) ) |
|
| 3 | 1 2 | mto | |- -. ( z = <. x , y >. /\ ( x e. (/) /\ y e. A ) ) |
| 4 | 3 | nex | |- -. E. y ( z = <. x , y >. /\ ( x e. (/) /\ y e. A ) ) |
| 5 | 4 | nex | |- -. E. x E. y ( z = <. x , y >. /\ ( x e. (/) /\ y e. A ) ) |
| 6 | elxp | |- ( z e. ( (/) X. A ) <-> E. x E. y ( z = <. x , y >. /\ ( x e. (/) /\ y e. A ) ) ) |
|
| 7 | 5 6 | mtbir | |- -. z e. ( (/) X. A ) |
| 8 | 7 | nel0 | |- ( (/) X. A ) = (/) |