Metamath Proof Explorer


Theorem 10m1e9

Description: 10 - 1 = 9. (Contributed by AV, 6-Sep-2021)

Ref Expression
Assertion 10m1e9
|- ( ; 1 0 - 1 ) = 9

Proof

Step Hyp Ref Expression
1 9cn
 |-  9 e. CC
2 ax-1cn
 |-  1 e. CC
3 9p1e10
 |-  ( 9 + 1 ) = ; 1 0
4 3 eqcomi
 |-  ; 1 0 = ( 9 + 1 )
5 1 2 4 mvrraddi
 |-  ( ; 1 0 - 1 ) = 9