Metamath Proof Explorer


Theorem 10re

Description: The number 10 is real. (Contributed by NM, 5-Feb-2007) (Revised by AV, 8-Sep-2021) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022)

Ref Expression
Assertion 10re
|- ; 1 0 e. RR

Proof

Step Hyp Ref Expression
1 df-dec
 |-  ; 1 0 = ( ( ( 9 + 1 ) x. 1 ) + 0 )
2 9re
 |-  9 e. RR
3 1re
 |-  1 e. RR
4 2 3 readdcli
 |-  ( 9 + 1 ) e. RR
5 4 3 remulcli
 |-  ( ( 9 + 1 ) x. 1 ) e. RR
6 0re
 |-  0 e. RR
7 5 6 readdcli
 |-  ( ( ( 9 + 1 ) x. 1 ) + 0 ) e. RR
8 1 7 eqeltri
 |-  ; 1 0 e. RR