Metamath Proof Explorer


Theorem 11prm

Description: 11 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 11prm
|- ; 1 1 e. Prime

Proof

Step Hyp Ref Expression
1 1nn0
 |-  1 e. NN0
2 1nn
 |-  1 e. NN
3 1 2 decnncl
 |-  ; 1 1 e. NN
4 1lt10
 |-  1 < ; 1 0
5 2 1 1 4 declti
 |-  1 < ; 1 1
6 0nn0
 |-  0 e. NN0
7 2cn
 |-  2 e. CC
8 7 mul02i
 |-  ( 0 x. 2 ) = 0
9 1e0p1
 |-  1 = ( 0 + 1 )
10 1 6 8 9 dec2dvds
 |-  -. 2 || ; 1 1
11 3nn
 |-  3 e. NN
12 3nn0
 |-  3 e. NN0
13 2nn
 |-  2 e. NN
14 3t3e9
 |-  ( 3 x. 3 ) = 9
15 14 oveq1i
 |-  ( ( 3 x. 3 ) + 2 ) = ( 9 + 2 )
16 9p2e11
 |-  ( 9 + 2 ) = ; 1 1
17 15 16 eqtri
 |-  ( ( 3 x. 3 ) + 2 ) = ; 1 1
18 2lt3
 |-  2 < 3
19 11 12 13 17 18 ndvdsi
 |-  -. 3 || ; 1 1
20 2nn0
 |-  2 e. NN0
21 5nn0
 |-  5 e. NN0
22 1lt2
 |-  1 < 2
23 1 20 1 21 4 22 decltc
 |-  ; 1 1 < ; 2 5
24 3 5 10 19 23 prmlem1
 |-  ; 1 1 e. Prime