Metamath Proof Explorer


Theorem 1259lem3

Description: Lemma for 1259prm . Calculate a power mod. In decimal, we calculate 2 ^ 3 8 = 2 ^ 3 4 x. 2 ^ 4 == 8 7 0 x. 1 6 = 1 1 N + 7 1 and 2 ^ 7 6 = ( 2 ^ 3 4 ) ^ 2 == 7 1 ^ 2 = 4 N + 5 == 5 . (Contributed by Mario Carneiro, 22-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015) (Proof shortened by AV, 16-Sep-2021)

Ref Expression
Hypothesis 1259prm.1
|- N = ; ; ; 1 2 5 9
Assertion 1259lem3
|- ( ( 2 ^ ; 7 6 ) mod N ) = ( 5 mod N )

Proof

Step Hyp Ref Expression
1 1259prm.1
 |-  N = ; ; ; 1 2 5 9
2 1nn0
 |-  1 e. NN0
3 2nn0
 |-  2 e. NN0
4 2 3 deccl
 |-  ; 1 2 e. NN0
5 5nn0
 |-  5 e. NN0
6 4 5 deccl
 |-  ; ; 1 2 5 e. NN0
7 9nn
 |-  9 e. NN
8 6 7 decnncl
 |-  ; ; ; 1 2 5 9 e. NN
9 1 8 eqeltri
 |-  N e. NN
10 2nn
 |-  2 e. NN
11 3nn0
 |-  3 e. NN0
12 8nn0
 |-  8 e. NN0
13 11 12 deccl
 |-  ; 3 8 e. NN0
14 4z
 |-  4 e. ZZ
15 7nn0
 |-  7 e. NN0
16 15 2 deccl
 |-  ; 7 1 e. NN0
17 4nn0
 |-  4 e. NN0
18 11 17 deccl
 |-  ; 3 4 e. NN0
19 2 2 deccl
 |-  ; 1 1 e. NN0
20 19 nn0zi
 |-  ; 1 1 e. ZZ
21 12 15 deccl
 |-  ; 8 7 e. NN0
22 0nn0
 |-  0 e. NN0
23 21 22 deccl
 |-  ; ; 8 7 0 e. NN0
24 6nn0
 |-  6 e. NN0
25 2 24 deccl
 |-  ; 1 6 e. NN0
26 1 1259lem2
 |-  ( ( 2 ^ ; 3 4 ) mod N ) = ( ; ; 8 7 0 mod N )
27 2exp4
 |-  ( 2 ^ 4 ) = ; 1 6
28 27 oveq1i
 |-  ( ( 2 ^ 4 ) mod N ) = ( ; 1 6 mod N )
29 eqid
 |-  ; 3 4 = ; 3 4
30 4p4e8
 |-  ( 4 + 4 ) = 8
31 11 17 17 29 30 decaddi
 |-  ( ; 3 4 + 4 ) = ; 3 8
32 9nn0
 |-  9 e. NN0
33 eqid
 |-  ; 7 1 = ; 7 1
34 10nn0
 |-  ; 1 0 e. NN0
35 eqid
 |-  ; 1 1 = ; 1 1
36 34 nn0cni
 |-  ; 1 0 e. CC
37 7cn
 |-  7 e. CC
38 dec10p
 |-  ( ; 1 0 + 7 ) = ; 1 7
39 36 37 38 addcomli
 |-  ( 7 + ; 1 0 ) = ; 1 7
40 2 11 deccl
 |-  ; 1 3 e. NN0
41 6 nn0cni
 |-  ; ; 1 2 5 e. CC
42 41 mulid2i
 |-  ( 1 x. ; ; 1 2 5 ) = ; ; 1 2 5
43 2 dec0h
 |-  1 = ; 0 1
44 eqid
 |-  ; 1 3 = ; 1 3
45 0p1e1
 |-  ( 0 + 1 ) = 1
46 3cn
 |-  3 e. CC
47 ax-1cn
 |-  1 e. CC
48 3p1e4
 |-  ( 3 + 1 ) = 4
49 46 47 48 addcomli
 |-  ( 1 + 3 ) = 4
50 22 2 2 11 43 44 45 49 decadd
 |-  ( 1 + ; 1 3 ) = ; 1 4
51 2p1e3
 |-  ( 2 + 1 ) = 3
52 eqid
 |-  ; 1 2 = ; 1 2
53 2 3 51 52 decsuc
 |-  ( ; 1 2 + 1 ) = ; 1 3
54 5p4e9
 |-  ( 5 + 4 ) = 9
55 4 5 2 17 42 50 53 54 decadd
 |-  ( ( 1 x. ; ; 1 2 5 ) + ( 1 + ; 1 3 ) ) = ; ; 1 3 9
56 5cn
 |-  5 e. CC
57 7p5e12
 |-  ( 7 + 5 ) = ; 1 2
58 37 56 57 addcomli
 |-  ( 5 + 7 ) = ; 1 2
59 4 5 15 42 53 3 58 decaddci
 |-  ( ( 1 x. ; ; 1 2 5 ) + 7 ) = ; ; 1 3 2
60 2 2 2 15 35 39 6 3 40 55 59 decmac
 |-  ( ( ; 1 1 x. ; ; 1 2 5 ) + ( 7 + ; 1 0 ) ) = ; ; ; 1 3 9 2
61 9p1e10
 |-  ( 9 + 1 ) = ; 1 0
62 9cn
 |-  9 e. CC
63 19 nn0cni
 |-  ; 1 1 e. CC
64 9t11e99
 |-  ( 9 x. ; 1 1 ) = ; 9 9
65 62 63 64 mulcomli
 |-  ( ; 1 1 x. 9 ) = ; 9 9
66 32 61 65 decsucc
 |-  ( ( ; 1 1 x. 9 ) + 1 ) = ; ; 1 0 0
67 6 32 15 2 1 33 19 22 34 60 66 decma2c
 |-  ( ( ; 1 1 x. N ) + ; 7 1 ) = ; ; ; ; 1 3 9 2 0
68 eqid
 |-  ; 1 6 = ; 1 6
69 5 3 deccl
 |-  ; 5 2 e. NN0
70 69 3 deccl
 |-  ; ; 5 2 2 e. NN0
71 eqid
 |-  ; ; 8 7 0 = ; ; 8 7 0
72 eqid
 |-  ; ; 5 2 2 = ; ; 5 2 2
73 eqid
 |-  ; 8 7 = ; 8 7
74 69 nn0cni
 |-  ; 5 2 e. CC
75 74 addid1i
 |-  ( ; 5 2 + 0 ) = ; 5 2
76 8cn
 |-  8 e. CC
77 76 mulid1i
 |-  ( 8 x. 1 ) = 8
78 56 addid1i
 |-  ( 5 + 0 ) = 5
79 77 78 oveq12i
 |-  ( ( 8 x. 1 ) + ( 5 + 0 ) ) = ( 8 + 5 )
80 8p5e13
 |-  ( 8 + 5 ) = ; 1 3
81 79 80 eqtri
 |-  ( ( 8 x. 1 ) + ( 5 + 0 ) ) = ; 1 3
82 37 mulid1i
 |-  ( 7 x. 1 ) = 7
83 82 oveq1i
 |-  ( ( 7 x. 1 ) + 2 ) = ( 7 + 2 )
84 7p2e9
 |-  ( 7 + 2 ) = 9
85 32 dec0h
 |-  9 = ; 0 9
86 83 84 85 3eqtri
 |-  ( ( 7 x. 1 ) + 2 ) = ; 0 9
87 12 15 5 3 73 75 2 32 22 81 86 decmac
 |-  ( ( ; 8 7 x. 1 ) + ( ; 5 2 + 0 ) ) = ; ; 1 3 9
88 47 mul02i
 |-  ( 0 x. 1 ) = 0
89 88 oveq1i
 |-  ( ( 0 x. 1 ) + 2 ) = ( 0 + 2 )
90 2cn
 |-  2 e. CC
91 90 addid2i
 |-  ( 0 + 2 ) = 2
92 3 dec0h
 |-  2 = ; 0 2
93 89 91 92 3eqtri
 |-  ( ( 0 x. 1 ) + 2 ) = ; 0 2
94 21 22 69 3 71 72 2 3 22 87 93 decmac
 |-  ( ( ; ; 8 7 0 x. 1 ) + ; ; 5 2 2 ) = ; ; ; 1 3 9 2
95 8t6e48
 |-  ( 8 x. 6 ) = ; 4 8
96 4p1e5
 |-  ( 4 + 1 ) = 5
97 8p4e12
 |-  ( 8 + 4 ) = ; 1 2
98 17 12 17 95 96 3 97 decaddci
 |-  ( ( 8 x. 6 ) + 4 ) = ; 5 2
99 7t6e42
 |-  ( 7 x. 6 ) = ; 4 2
100 24 12 15 73 3 17 98 99 decmul1c
 |-  ( ; 8 7 x. 6 ) = ; ; 5 2 2
101 6cn
 |-  6 e. CC
102 101 mul02i
 |-  ( 0 x. 6 ) = 0
103 24 21 22 71 100 102 decmul1
 |-  ( ; ; 8 7 0 x. 6 ) = ; ; ; 5 2 2 0
104 23 2 24 68 22 70 94 103 decmul2c
 |-  ( ; ; 8 7 0 x. ; 1 6 ) = ; ; ; ; 1 3 9 2 0
105 67 104 eqtr4i
 |-  ( ( ; 1 1 x. N ) + ; 7 1 ) = ( ; ; 8 7 0 x. ; 1 6 )
106 9 10 18 20 23 16 17 25 26 28 31 105 modxai
 |-  ( ( 2 ^ ; 3 8 ) mod N ) = ( ; 7 1 mod N )
107 eqid
 |-  ; 3 8 = ; 3 8
108 3t2e6
 |-  ( 3 x. 2 ) = 6
109 46 90 108 mulcomli
 |-  ( 2 x. 3 ) = 6
110 109 oveq1i
 |-  ( ( 2 x. 3 ) + 1 ) = ( 6 + 1 )
111 6p1e7
 |-  ( 6 + 1 ) = 7
112 110 111 eqtri
 |-  ( ( 2 x. 3 ) + 1 ) = 7
113 8t2e16
 |-  ( 8 x. 2 ) = ; 1 6
114 76 90 113 mulcomli
 |-  ( 2 x. 8 ) = ; 1 6
115 3 11 12 107 24 2 112 114 decmul2c
 |-  ( 2 x. ; 3 8 ) = ; 7 6
116 5 dec0h
 |-  5 = ; 0 5
117 eqid
 |-  ; ; 1 2 5 = ; ; 1 2 5
118 4cn
 |-  4 e. CC
119 118 addid2i
 |-  ( 0 + 4 ) = 4
120 17 dec0h
 |-  4 = ; 0 4
121 119 120 eqtri
 |-  ( 0 + 4 ) = ; 0 4
122 91 92 eqtri
 |-  ( 0 + 2 ) = ; 0 2
123 118 mulid1i
 |-  ( 4 x. 1 ) = 4
124 123 45 oveq12i
 |-  ( ( 4 x. 1 ) + ( 0 + 1 ) ) = ( 4 + 1 )
125 124 96 eqtri
 |-  ( ( 4 x. 1 ) + ( 0 + 1 ) ) = 5
126 4t2e8
 |-  ( 4 x. 2 ) = 8
127 126 oveq1i
 |-  ( ( 4 x. 2 ) + 2 ) = ( 8 + 2 )
128 8p2e10
 |-  ( 8 + 2 ) = ; 1 0
129 127 128 eqtri
 |-  ( ( 4 x. 2 ) + 2 ) = ; 1 0
130 2 3 22 3 52 122 17 22 2 125 129 decma2c
 |-  ( ( 4 x. ; 1 2 ) + ( 0 + 2 ) ) = ; 5 0
131 5t4e20
 |-  ( 5 x. 4 ) = ; 2 0
132 56 118 131 mulcomli
 |-  ( 4 x. 5 ) = ; 2 0
133 3 22 17 132 119 decaddi
 |-  ( ( 4 x. 5 ) + 4 ) = ; 2 4
134 4 5 22 17 117 121 17 17 3 130 133 decma2c
 |-  ( ( 4 x. ; ; 1 2 5 ) + ( 0 + 4 ) ) = ; ; 5 0 4
135 9t4e36
 |-  ( 9 x. 4 ) = ; 3 6
136 62 118 135 mulcomli
 |-  ( 4 x. 9 ) = ; 3 6
137 6p5e11
 |-  ( 6 + 5 ) = ; 1 1
138 11 24 5 136 48 2 137 decaddci
 |-  ( ( 4 x. 9 ) + 5 ) = ; 4 1
139 6 32 22 5 1 116 17 2 17 134 138 decma2c
 |-  ( ( 4 x. N ) + 5 ) = ; ; ; 5 0 4 1
140 7t7e49
 |-  ( 7 x. 7 ) = ; 4 9
141 17 96 140 decsucc
 |-  ( ( 7 x. 7 ) + 1 ) = ; 5 0
142 37 mulid2i
 |-  ( 1 x. 7 ) = 7
143 142 oveq1i
 |-  ( ( 1 x. 7 ) + 7 ) = ( 7 + 7 )
144 7p7e14
 |-  ( 7 + 7 ) = ; 1 4
145 143 144 eqtri
 |-  ( ( 1 x. 7 ) + 7 ) = ; 1 4
146 15 2 15 33 15 17 2 141 145 decrmac
 |-  ( ( ; 7 1 x. 7 ) + 7 ) = ; ; 5 0 4
147 16 nn0cni
 |-  ; 7 1 e. CC
148 147 mulid1i
 |-  ( ; 7 1 x. 1 ) = ; 7 1
149 16 15 2 33 2 15 146 148 decmul2c
 |-  ( ; 7 1 x. ; 7 1 ) = ; ; ; 5 0 4 1
150 139 149 eqtr4i
 |-  ( ( 4 x. N ) + 5 ) = ( ; 7 1 x. ; 7 1 )
151 9 10 13 14 16 5 106 115 150 mod2xi
 |-  ( ( 2 ^ ; 7 6 ) mod N ) = ( 5 mod N )