Metamath Proof Explorer


Theorem 139prm

Description: 139 is a prime number. (Contributed by Mario Carneiro, 19-Feb-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 139prm
|- ; ; 1 3 9 e. Prime

Proof

Step Hyp Ref Expression
1 1nn0
 |-  1 e. NN0
2 3nn0
 |-  3 e. NN0
3 1 2 deccl
 |-  ; 1 3 e. NN0
4 9nn
 |-  9 e. NN
5 3 4 decnncl
 |-  ; ; 1 3 9 e. NN
6 8nn0
 |-  8 e. NN0
7 4nn0
 |-  4 e. NN0
8 9nn0
 |-  9 e. NN0
9 1lt8
 |-  1 < 8
10 3lt10
 |-  3 < ; 1 0
11 9lt10
 |-  9 < ; 1 0
12 1 6 2 7 8 1 9 10 11 3decltc
 |-  ; ; 1 3 9 < ; ; 8 4 1
13 3nn
 |-  3 e. NN
14 1 13 decnncl
 |-  ; 1 3 e. NN
15 1lt10
 |-  1 < ; 1 0
16 14 8 1 15 declti
 |-  1 < ; ; 1 3 9
17 4t2e8
 |-  ( 4 x. 2 ) = 8
18 df-9
 |-  9 = ( 8 + 1 )
19 3 7 17 18 dec2dvds
 |-  -. 2 || ; ; 1 3 9
20 6nn0
 |-  6 e. NN0
21 7 20 deccl
 |-  ; 4 6 e. NN0
22 1nn
 |-  1 e. NN
23 0nn0
 |-  0 e. NN0
24 eqid
 |-  ; 4 6 = ; 4 6
25 1 dec0h
 |-  1 = ; 0 1
26 ax-1cn
 |-  1 e. CC
27 26 addid2i
 |-  ( 0 + 1 ) = 1
28 27 oveq2i
 |-  ( ( 3 x. 4 ) + ( 0 + 1 ) ) = ( ( 3 x. 4 ) + 1 )
29 2nn0
 |-  2 e. NN0
30 2p1e3
 |-  ( 2 + 1 ) = 3
31 7 nn0cni
 |-  4 e. CC
32 3cn
 |-  3 e. CC
33 4t3e12
 |-  ( 4 x. 3 ) = ; 1 2
34 31 32 33 mulcomli
 |-  ( 3 x. 4 ) = ; 1 2
35 1 29 30 34 decsuc
 |-  ( ( 3 x. 4 ) + 1 ) = ; 1 3
36 28 35 eqtri
 |-  ( ( 3 x. 4 ) + ( 0 + 1 ) ) = ; 1 3
37 8p1e9
 |-  ( 8 + 1 ) = 9
38 20 nn0cni
 |-  6 e. CC
39 6t3e18
 |-  ( 6 x. 3 ) = ; 1 8
40 38 32 39 mulcomli
 |-  ( 3 x. 6 ) = ; 1 8
41 1 6 37 40 decsuc
 |-  ( ( 3 x. 6 ) + 1 ) = ; 1 9
42 7 20 23 1 24 25 2 8 1 36 41 decma2c
 |-  ( ( 3 x. ; 4 6 ) + 1 ) = ; ; 1 3 9
43 1lt3
 |-  1 < 3
44 13 21 22 42 43 ndvdsi
 |-  -. 3 || ; ; 1 3 9
45 4nn
 |-  4 e. NN
46 4lt5
 |-  4 < 5
47 5p4e9
 |-  ( 5 + 4 ) = 9
48 3 45 46 47 dec5dvds2
 |-  -. 5 || ; ; 1 3 9
49 7nn
 |-  7 e. NN
50 1 8 deccl
 |-  ; 1 9 e. NN0
51 6nn
 |-  6 e. NN
52 eqid
 |-  ; 1 9 = ; 1 9
53 20 dec0h
 |-  6 = ; 0 6
54 7nn0
 |-  7 e. NN0
55 7cn
 |-  7 e. CC
56 55 mulid1i
 |-  ( 7 x. 1 ) = 7
57 38 addid2i
 |-  ( 0 + 6 ) = 6
58 56 57 oveq12i
 |-  ( ( 7 x. 1 ) + ( 0 + 6 ) ) = ( 7 + 6 )
59 7p6e13
 |-  ( 7 + 6 ) = ; 1 3
60 58 59 eqtri
 |-  ( ( 7 x. 1 ) + ( 0 + 6 ) ) = ; 1 3
61 9cn
 |-  9 e. CC
62 9t7e63
 |-  ( 9 x. 7 ) = ; 6 3
63 61 55 62 mulcomli
 |-  ( 7 x. 9 ) = ; 6 3
64 6p3e9
 |-  ( 6 + 3 ) = 9
65 38 32 64 addcomli
 |-  ( 3 + 6 ) = 9
66 20 2 20 63 65 decaddi
 |-  ( ( 7 x. 9 ) + 6 ) = ; 6 9
67 1 8 23 20 52 53 54 8 20 60 66 decma2c
 |-  ( ( 7 x. ; 1 9 ) + 6 ) = ; ; 1 3 9
68 6lt7
 |-  6 < 7
69 49 50 51 67 68 ndvdsi
 |-  -. 7 || ; ; 1 3 9
70 1 22 decnncl
 |-  ; 1 1 e. NN
71 1 29 deccl
 |-  ; 1 2 e. NN0
72 eqid
 |-  ; 1 2 = ; 1 2
73 54 dec0h
 |-  7 = ; 0 7
74 1 1 deccl
 |-  ; 1 1 e. NN0
75 2cn
 |-  2 e. CC
76 75 addid2i
 |-  ( 0 + 2 ) = 2
77 76 oveq2i
 |-  ( ( ; 1 1 x. 1 ) + ( 0 + 2 ) ) = ( ( ; 1 1 x. 1 ) + 2 )
78 70 nncni
 |-  ; 1 1 e. CC
79 78 mulid1i
 |-  ( ; 1 1 x. 1 ) = ; 1 1
80 1p2e3
 |-  ( 1 + 2 ) = 3
81 1 1 29 79 80 decaddi
 |-  ( ( ; 1 1 x. 1 ) + 2 ) = ; 1 3
82 77 81 eqtri
 |-  ( ( ; 1 1 x. 1 ) + ( 0 + 2 ) ) = ; 1 3
83 eqid
 |-  ; 1 1 = ; 1 1
84 75 mulid2i
 |-  ( 1 x. 2 ) = 2
85 00id
 |-  ( 0 + 0 ) = 0
86 84 85 oveq12i
 |-  ( ( 1 x. 2 ) + ( 0 + 0 ) ) = ( 2 + 0 )
87 75 addid1i
 |-  ( 2 + 0 ) = 2
88 86 87 eqtri
 |-  ( ( 1 x. 2 ) + ( 0 + 0 ) ) = 2
89 84 oveq1i
 |-  ( ( 1 x. 2 ) + 7 ) = ( 2 + 7 )
90 7p2e9
 |-  ( 7 + 2 ) = 9
91 55 75 90 addcomli
 |-  ( 2 + 7 ) = 9
92 8 dec0h
 |-  9 = ; 0 9
93 89 91 92 3eqtri
 |-  ( ( 1 x. 2 ) + 7 ) = ; 0 9
94 1 1 23 54 83 73 29 8 23 88 93 decmac
 |-  ( ( ; 1 1 x. 2 ) + 7 ) = ; 2 9
95 1 29 23 54 72 73 74 8 29 82 94 decma2c
 |-  ( ( ; 1 1 x. ; 1 2 ) + 7 ) = ; ; 1 3 9
96 7lt10
 |-  7 < ; 1 0
97 22 1 54 96 declti
 |-  7 < ; 1 1
98 70 71 49 95 97 ndvdsi
 |-  -. ; 1 1 || ; ; 1 3 9
99 10nn0
 |-  ; 1 0 e. NN0
100 eqid
 |-  ; 1 0 = ; 1 0
101 eqid
 |-  ; 1 3 = ; 1 3
102 23 dec0h
 |-  0 = ; 0 0
103 85 102 eqtri
 |-  ( 0 + 0 ) = ; 0 0
104 26 mulid1i
 |-  ( 1 x. 1 ) = 1
105 104 85 oveq12i
 |-  ( ( 1 x. 1 ) + ( 0 + 0 ) ) = ( 1 + 0 )
106 26 addid1i
 |-  ( 1 + 0 ) = 1
107 105 106 eqtri
 |-  ( ( 1 x. 1 ) + ( 0 + 0 ) ) = 1
108 32 mulid1i
 |-  ( 3 x. 1 ) = 3
109 108 oveq1i
 |-  ( ( 3 x. 1 ) + 0 ) = ( 3 + 0 )
110 32 addid1i
 |-  ( 3 + 0 ) = 3
111 2 dec0h
 |-  3 = ; 0 3
112 109 110 111 3eqtri
 |-  ( ( 3 x. 1 ) + 0 ) = ; 0 3
113 1 2 23 23 101 103 1 2 23 107 112 decmac
 |-  ( ( ; 1 3 x. 1 ) + ( 0 + 0 ) ) = ; 1 3
114 3 nn0cni
 |-  ; 1 3 e. CC
115 114 mul01i
 |-  ( ; 1 3 x. 0 ) = 0
116 115 oveq1i
 |-  ( ( ; 1 3 x. 0 ) + 9 ) = ( 0 + 9 )
117 61 addid2i
 |-  ( 0 + 9 ) = 9
118 116 117 92 3eqtri
 |-  ( ( ; 1 3 x. 0 ) + 9 ) = ; 0 9
119 1 23 23 8 100 92 3 8 23 113 118 decma2c
 |-  ( ( ; 1 3 x. ; 1 0 ) + 9 ) = ; ; 1 3 9
120 22 2 8 11 declti
 |-  9 < ; 1 3
121 14 99 4 119 120 ndvdsi
 |-  -. ; 1 3 || ; ; 1 3 9
122 1 49 decnncl
 |-  ; 1 7 e. NN
123 eqid
 |-  ; 1 7 = ; 1 7
124 5nn0
 |-  5 e. NN0
125 8cn
 |-  8 e. CC
126 125 mulid2i
 |-  ( 1 x. 8 ) = 8
127 5cn
 |-  5 e. CC
128 127 addid2i
 |-  ( 0 + 5 ) = 5
129 126 128 oveq12i
 |-  ( ( 1 x. 8 ) + ( 0 + 5 ) ) = ( 8 + 5 )
130 8p5e13
 |-  ( 8 + 5 ) = ; 1 3
131 129 130 eqtri
 |-  ( ( 1 x. 8 ) + ( 0 + 5 ) ) = ; 1 3
132 8t7e56
 |-  ( 8 x. 7 ) = ; 5 6
133 125 55 132 mulcomli
 |-  ( 7 x. 8 ) = ; 5 6
134 124 20 2 133 64 decaddi
 |-  ( ( 7 x. 8 ) + 3 ) = ; 5 9
135 1 54 23 2 123 111 6 8 124 131 134 decmac
 |-  ( ( ; 1 7 x. 8 ) + 3 ) = ; ; 1 3 9
136 22 54 2 10 declti
 |-  3 < ; 1 7
137 122 6 13 135 136 ndvdsi
 |-  -. ; 1 7 || ; ; 1 3 9
138 1 4 decnncl
 |-  ; 1 9 e. NN
139 55 mulid2i
 |-  ( 1 x. 7 ) = 7
140 139 57 oveq12i
 |-  ( ( 1 x. 7 ) + ( 0 + 6 ) ) = ( 7 + 6 )
141 140 59 eqtri
 |-  ( ( 1 x. 7 ) + ( 0 + 6 ) ) = ; 1 3
142 20 2 20 62 65 decaddi
 |-  ( ( 9 x. 7 ) + 6 ) = ; 6 9
143 1 8 23 20 52 53 54 8 20 141 142 decmac
 |-  ( ( ; 1 9 x. 7 ) + 6 ) = ; ; 1 3 9
144 6lt10
 |-  6 < ; 1 0
145 22 8 20 144 declti
 |-  6 < ; 1 9
146 138 54 51 143 145 ndvdsi
 |-  -. ; 1 9 || ; ; 1 3 9
147 29 13 decnncl
 |-  ; 2 3 e. NN
148 eqid
 |-  ; 2 3 = ; 2 3
149 6t2e12
 |-  ( 6 x. 2 ) = ; 1 2
150 38 75 149 mulcomli
 |-  ( 2 x. 6 ) = ; 1 2
151 1 29 30 150 decsuc
 |-  ( ( 2 x. 6 ) + 1 ) = ; 1 3
152 29 2 1 148 20 8 1 151 41 decrmac
 |-  ( ( ; 2 3 x. 6 ) + 1 ) = ; ; 1 3 9
153 2nn
 |-  2 e. NN
154 153 2 1 15 declti
 |-  1 < ; 2 3
155 147 20 22 152 154 ndvdsi
 |-  -. ; 2 3 || ; ; 1 3 9
156 5 12 16 19 44 48 69 98 121 137 146 155 prmlem2
 |-  ; ; 1 3 9 e. Prime