Metamath Proof Explorer


Theorem 19.12

Description: Theorem 19.12 of Margaris p. 89. Assuming the converse is a mistake sometimes made by beginners! But sometimes the converse does hold, as in 19.12vv and r19.12sn . (Contributed by NM, 12-Mar-1993) (Proof shortened by Wolf Lammen, 3-Jan-2018)

Ref Expression
Assertion 19.12
|- ( E. x A. y ph -> A. y E. x ph )

Proof

Step Hyp Ref Expression
1 nfa1
 |-  F/ y A. y ph
2 1 nfex
 |-  F/ y E. x A. y ph
3 sp
 |-  ( A. y ph -> ph )
4 3 eximi
 |-  ( E. x A. y ph -> E. x ph )
5 2 4 alrimi
 |-  ( E. x A. y ph -> A. y E. x ph )