Metamath Proof Explorer


Theorem 19.16

Description: Theorem 19.16 of Margaris p. 90. (Contributed by NM, 12-Mar-1993)

Ref Expression
Hypothesis 19.16.1
|- F/ x ph
Assertion 19.16
|- ( A. x ( ph <-> ps ) -> ( ph <-> A. x ps ) )

Proof

Step Hyp Ref Expression
1 19.16.1
 |-  F/ x ph
2 1 19.3
 |-  ( A. x ph <-> ph )
3 albi
 |-  ( A. x ( ph <-> ps ) -> ( A. x ph <-> A. x ps ) )
4 2 3 bitr3id
 |-  ( A. x ( ph <-> ps ) -> ( ph <-> A. x ps ) )