Metamath Proof Explorer


Theorem 19.21bbi

Description: Inference removing two universal quantifiers. Version of 19.21bi with two quantifiers. (Contributed by NM, 20-Apr-1994)

Ref Expression
Hypothesis 19.21bbi.1
|- ( ph -> A. x A. y ps )
Assertion 19.21bbi
|- ( ph -> ps )

Proof

Step Hyp Ref Expression
1 19.21bbi.1
 |-  ( ph -> A. x A. y ps )
2 1 19.21bi
 |-  ( ph -> A. y ps )
3 2 19.21bi
 |-  ( ph -> ps )