Metamath Proof Explorer


Theorem 19.21t

Description: Closed form of Theorem 19.21 of Margaris p. 90, see 19.21 . (Contributed by NM, 27-May-1997) (Revised by Mario Carneiro, 24-Sep-2016) (Proof shortened by Wolf Lammen, 3-Jan-2018) df-nf changed. (Revised by Wolf Lammen, 11-Sep-2021) (Proof shortened by BJ, 3-Nov-2021)

Ref Expression
Assertion 19.21t
|- ( F/ x ph -> ( A. x ( ph -> ps ) <-> ( ph -> A. x ps ) ) )

Proof

Step Hyp Ref Expression
1 19.38a
 |-  ( F/ x ph -> ( ( E. x ph -> A. x ps ) <-> A. x ( ph -> ps ) ) )
2 19.9t
 |-  ( F/ x ph -> ( E. x ph <-> ph ) )
3 2 imbi1d
 |-  ( F/ x ph -> ( ( E. x ph -> A. x ps ) <-> ( ph -> A. x ps ) ) )
4 1 3 bitr3d
 |-  ( F/ x ph -> ( A. x ( ph -> ps ) <-> ( ph -> A. x ps ) ) )