Metamath Proof Explorer


Theorem 19.23h

Description: Theorem 19.23 of Margaris p. 90. See 19.23 . (Contributed by NM, 24-Jan-1993) (Revised by Mario Carneiro, 24-Sep-2016) (Proof shortened by Wolf Lammen, 1-Jan-2018)

Ref Expression
Hypothesis 19.23h.1
|- ( ps -> A. x ps )
Assertion 19.23h
|- ( A. x ( ph -> ps ) <-> ( E. x ph -> ps ) )

Proof

Step Hyp Ref Expression
1 19.23h.1
 |-  ( ps -> A. x ps )
2 1 nf5i
 |-  F/ x ps
3 2 19.23
 |-  ( A. x ( ph -> ps ) <-> ( E. x ph -> ps ) )