Metamath Proof Explorer


Theorem 19.23t

Description: Closed form of Theorem 19.23 of Margaris p. 90. See 19.23 . (Contributed by NM, 7-Nov-2005) (Proof shortened by Wolf Lammen, 13-Aug-2020) df-nf changed. (Revised by Wolf Lammen, 11-Sep-2021) (Proof shortened by BJ, 8-Oct-2022)

Ref Expression
Assertion 19.23t
|- ( F/ x ps -> ( A. x ( ph -> ps ) <-> ( E. x ph -> ps ) ) )

Proof

Step Hyp Ref Expression
1 19.38b
 |-  ( F/ x ps -> ( ( E. x ph -> A. x ps ) <-> A. x ( ph -> ps ) ) )
2 19.3t
 |-  ( F/ x ps -> ( A. x ps <-> ps ) )
3 2 imbi2d
 |-  ( F/ x ps -> ( ( E. x ph -> A. x ps ) <-> ( E. x ph -> ps ) ) )
4 1 3 bitr3d
 |-  ( F/ x ps -> ( A. x ( ph -> ps ) <-> ( E. x ph -> ps ) ) )