Description: Theorem 19.26 of Margaris p. 90. Also Theorem *10.22 of WhiteheadRussell p. 147. (Contributed by NM, 12-Mar-1993) (Proof shortened by Wolf Lammen, 4-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | 19.26 | |- ( A. x ( ph /\ ps ) <-> ( A. x ph /\ A. x ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |- ( ( ph /\ ps ) -> ph ) |
|
2 | 1 | alimi | |- ( A. x ( ph /\ ps ) -> A. x ph ) |
3 | simpr | |- ( ( ph /\ ps ) -> ps ) |
|
4 | 3 | alimi | |- ( A. x ( ph /\ ps ) -> A. x ps ) |
5 | 2 4 | jca | |- ( A. x ( ph /\ ps ) -> ( A. x ph /\ A. x ps ) ) |
6 | id | |- ( ( ph /\ ps ) -> ( ph /\ ps ) ) |
|
7 | 6 | alanimi | |- ( ( A. x ph /\ A. x ps ) -> A. x ( ph /\ ps ) ) |
8 | 5 7 | impbii | |- ( A. x ( ph /\ ps ) <-> ( A. x ph /\ A. x ps ) ) |