Metamath Proof Explorer


Theorem 19.28

Description: Theorem 19.28 of Margaris p. 90. See 19.28v for a version requiring fewer axioms. (Contributed by NM, 1-Aug-1993)

Ref Expression
Hypothesis 19.28.1
|- F/ x ph
Assertion 19.28
|- ( A. x ( ph /\ ps ) <-> ( ph /\ A. x ps ) )

Proof

Step Hyp Ref Expression
1 19.28.1
 |-  F/ x ph
2 19.26
 |-  ( A. x ( ph /\ ps ) <-> ( A. x ph /\ A. x ps ) )
3 1 19.3
 |-  ( A. x ph <-> ph )
4 3 anbi1i
 |-  ( ( A. x ph /\ A. x ps ) <-> ( ph /\ A. x ps ) )
5 2 4 bitri
 |-  ( A. x ( ph /\ ps ) <-> ( ph /\ A. x ps ) )