Description: Theorem 19.30 of Margaris p. 90. (Contributed by NM, 12-Mar-1993) (Proof shortened by Andrew Salmon, 25-May-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 19.30 | |- ( A. x ( ph \/ ps ) -> ( A. x ph \/ E. x ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exnal | |- ( E. x -. ph <-> -. A. x ph ) |
|
| 2 | pm2.53 | |- ( ( ph \/ ps ) -> ( -. ph -> ps ) ) |
|
| 3 | 2 | aleximi | |- ( A. x ( ph \/ ps ) -> ( E. x -. ph -> E. x ps ) ) |
| 4 | 1 3 | biimtrrid | |- ( A. x ( ph \/ ps ) -> ( -. A. x ph -> E. x ps ) ) |
| 5 | 4 | orrd | |- ( A. x ( ph \/ ps ) -> ( A. x ph \/ E. x ps ) ) |