Description: Theorem 19.30 of Margaris p. 90. (Contributed by NM, 12-Mar-1993) (Proof shortened by Andrew Salmon, 25-May-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | 19.30 | |- ( A. x ( ph \/ ps ) -> ( A. x ph \/ E. x ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exnal | |- ( E. x -. ph <-> -. A. x ph ) |
|
2 | pm2.53 | |- ( ( ph \/ ps ) -> ( -. ph -> ps ) ) |
|
3 | 2 | aleximi | |- ( A. x ( ph \/ ps ) -> ( E. x -. ph -> E. x ps ) ) |
4 | 1 3 | syl5bir | |- ( A. x ( ph \/ ps ) -> ( -. A. x ph -> E. x ps ) ) |
5 | 4 | orrd | |- ( A. x ( ph \/ ps ) -> ( A. x ph \/ E. x ps ) ) |