Metamath Proof Explorer


Theorem 19.31v

Description: Version of 19.31 with a disjoint variable condition, requiring fewer axioms. (Contributed by BJ, 7-Mar-2020)

Ref Expression
Assertion 19.31v
|- ( A. x ( ph \/ ps ) <-> ( A. x ph \/ ps ) )

Proof

Step Hyp Ref Expression
1 19.32v
 |-  ( A. x ( ps \/ ph ) <-> ( ps \/ A. x ph ) )
2 orcom
 |-  ( ( ph \/ ps ) <-> ( ps \/ ph ) )
3 2 albii
 |-  ( A. x ( ph \/ ps ) <-> A. x ( ps \/ ph ) )
4 orcom
 |-  ( ( A. x ph \/ ps ) <-> ( ps \/ A. x ph ) )
5 1 3 4 3bitr4i
 |-  ( A. x ( ph \/ ps ) <-> ( A. x ph \/ ps ) )