Metamath Proof Explorer


Theorem 19.35i

Description: Inference associated with 19.35 . (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypothesis 19.35i.1
|- E. x ( ph -> ps )
Assertion 19.35i
|- ( A. x ph -> E. x ps )

Proof

Step Hyp Ref Expression
1 19.35i.1
 |-  E. x ( ph -> ps )
2 19.35
 |-  ( E. x ( ph -> ps ) <-> ( A. x ph -> E. x ps ) )
3 1 2 mpbi
 |-  ( A. x ph -> E. x ps )