Metamath Proof Explorer


Theorem 19.36

Description: Theorem 19.36 of Margaris p. 90. See 19.36v for a version requiring fewer axioms. (Contributed by NM, 24-Jun-1993)

Ref Expression
Hypothesis 19.36.1
|- F/ x ps
Assertion 19.36
|- ( E. x ( ph -> ps ) <-> ( A. x ph -> ps ) )

Proof

Step Hyp Ref Expression
1 19.36.1
 |-  F/ x ps
2 19.35
 |-  ( E. x ( ph -> ps ) <-> ( A. x ph -> E. x ps ) )
3 1 19.9
 |-  ( E. x ps <-> ps )
4 3 imbi2i
 |-  ( ( A. x ph -> E. x ps ) <-> ( A. x ph -> ps ) )
5 2 4 bitri
 |-  ( E. x ( ph -> ps ) <-> ( A. x ph -> ps ) )