Metamath Proof Explorer


Theorem 19.36imv

Description: One direction of 19.36v that can be proven without ax-6 . (Contributed by Rohan Ridenour, 16-Apr-2022) (Proof shortened by Wolf Lammen, 22-Sep-2024)

Ref Expression
Assertion 19.36imv
|- ( E. x ( ph -> ps ) -> ( A. x ph -> ps ) )

Proof

Step Hyp Ref Expression
1 pm2.27
 |-  ( ph -> ( ( ph -> ps ) -> ps ) )
2 1 aleximi
 |-  ( A. x ph -> ( E. x ( ph -> ps ) -> E. x ps ) )
3 ax5e
 |-  ( E. x ps -> ps )
4 2 3 syl6com
 |-  ( E. x ( ph -> ps ) -> ( A. x ph -> ps ) )