Metamath Proof Explorer


Theorem 19.36imvOLD

Description: Obsolete version of 19.36imv as of 22-Sep-2024. (Contributed by Rohan Ridenour, 16-Apr-2022) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion 19.36imvOLD
|- ( E. x ( ph -> ps ) -> ( A. x ph -> ps ) )

Proof

Step Hyp Ref Expression
1 19.35
 |-  ( E. x ( ph -> ps ) <-> ( A. x ph -> E. x ps ) )
2 1 biimpi
 |-  ( E. x ( ph -> ps ) -> ( A. x ph -> E. x ps ) )
3 ax5e
 |-  ( E. x ps -> ps )
4 2 3 syl6
 |-  ( E. x ( ph -> ps ) -> ( A. x ph -> ps ) )