Metamath Proof Explorer


Theorem 19.36v

Description: Version of 19.36 with a disjoint variable condition instead of a nonfreeness hypothesis. (Contributed by NM, 18-Aug-1993) Reduce dependencies on axioms. (Revised by Wolf Lammen, 17-Jan-2020)

Ref Expression
Assertion 19.36v
|- ( E. x ( ph -> ps ) <-> ( A. x ph -> ps ) )

Proof

Step Hyp Ref Expression
1 19.35
 |-  ( E. x ( ph -> ps ) <-> ( A. x ph -> E. x ps ) )
2 19.9v
 |-  ( E. x ps <-> ps )
3 2 imbi2i
 |-  ( ( A. x ph -> E. x ps ) <-> ( A. x ph -> ps ) )
4 1 3 bitri
 |-  ( E. x ( ph -> ps ) <-> ( A. x ph -> ps ) )