Metamath Proof Explorer


Theorem 19.37

Description: Theorem 19.37 of Margaris p. 90. See 19.37v for a version requiring fewer axioms. (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypothesis 19.37.1
|- F/ x ph
Assertion 19.37
|- ( E. x ( ph -> ps ) <-> ( ph -> E. x ps ) )

Proof

Step Hyp Ref Expression
1 19.37.1
 |-  F/ x ph
2 19.35
 |-  ( E. x ( ph -> ps ) <-> ( A. x ph -> E. x ps ) )
3 1 19.3
 |-  ( A. x ph <-> ph )
4 3 imbi1i
 |-  ( ( A. x ph -> E. x ps ) <-> ( ph -> E. x ps ) )
5 2 4 bitri
 |-  ( E. x ( ph -> ps ) <-> ( ph -> E. x ps ) )