Metamath Proof Explorer


Theorem 19.37iv

Description: Inference associated with 19.37v . (Contributed by NM, 5-Aug-1993) Remove dependency on ax-6 . (Revised by Rohan Ridenour, 15-Apr-2022)

Ref Expression
Hypothesis 19.37iv.1
|- E. x ( ph -> ps )
Assertion 19.37iv
|- ( ph -> E. x ps )

Proof

Step Hyp Ref Expression
1 19.37iv.1
 |-  E. x ( ph -> ps )
2 19.37imv
 |-  ( E. x ( ph -> ps ) -> ( ph -> E. x ps ) )
3 1 2 ax-mp
 |-  ( ph -> E. x ps )