Description: Under a nonfreeness hypothesis, the implication 19.38 can be strengthened to an equivalence. See also 19.38b . (Contributed by BJ, 3-Nov-2021) (Proof shortened by Wolf Lammen, 9-Jul-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | 19.38a | |- ( F/ x ph -> ( ( E. x ph -> A. x ps ) <-> A. x ( ph -> ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.38 | |- ( ( E. x ph -> A. x ps ) -> A. x ( ph -> ps ) ) |
|
2 | id | |- ( F/ x ph -> F/ x ph ) |
|
3 | 2 | nfrd | |- ( F/ x ph -> ( E. x ph -> A. x ph ) ) |
4 | alim | |- ( A. x ( ph -> ps ) -> ( A. x ph -> A. x ps ) ) |
|
5 | 3 4 | syl9 | |- ( F/ x ph -> ( A. x ( ph -> ps ) -> ( E. x ph -> A. x ps ) ) ) |
6 | 1 5 | impbid2 | |- ( F/ x ph -> ( ( E. x ph -> A. x ps ) <-> A. x ( ph -> ps ) ) ) |