Metamath Proof Explorer


Theorem 19.38b

Description: Under a nonfreeness hypothesis, the implication 19.38 can be strengthened to an equivalence. See also 19.38a . (Contributed by BJ, 3-Nov-2021) (Proof shortened by Wolf Lammen, 9-Jul-2022)

Ref Expression
Assertion 19.38b
|- ( F/ x ps -> ( ( E. x ph -> A. x ps ) <-> A. x ( ph -> ps ) ) )

Proof

Step Hyp Ref Expression
1 19.38
 |-  ( ( E. x ph -> A. x ps ) -> A. x ( ph -> ps ) )
2 exim
 |-  ( A. x ( ph -> ps ) -> ( E. x ph -> E. x ps ) )
3 id
 |-  ( F/ x ps -> F/ x ps )
4 3 nfrd
 |-  ( F/ x ps -> ( E. x ps -> A. x ps ) )
5 2 4 syl9r
 |-  ( F/ x ps -> ( A. x ( ph -> ps ) -> ( E. x ph -> A. x ps ) ) )
6 1 5 impbid2
 |-  ( F/ x ps -> ( ( E. x ph -> A. x ps ) <-> A. x ( ph -> ps ) ) )