Metamath Proof Explorer


Theorem 19.40-2

Description: Theorem *11.42 in WhiteheadRussell p. 163. Theorem 19.40 of Margaris p. 90 with two quantifiers. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion 19.40-2
|- ( E. x E. y ( ph /\ ps ) -> ( E. x E. y ph /\ E. x E. y ps ) )

Proof

Step Hyp Ref Expression
1 19.40
 |-  ( E. y ( ph /\ ps ) -> ( E. y ph /\ E. y ps ) )
2 1 eximi
 |-  ( E. x E. y ( ph /\ ps ) -> E. x ( E. y ph /\ E. y ps ) )
3 19.40
 |-  ( E. x ( E. y ph /\ E. y ps ) -> ( E. x E. y ph /\ E. x E. y ps ) )
4 2 3 syl
 |-  ( E. x E. y ( ph /\ ps ) -> ( E. x E. y ph /\ E. x E. y ps ) )