Description: Theorem 19.41 of Margaris p. 90. See 19.41v for a version requiring fewer axioms. (Contributed by NM, 14-May-1993) (Proof shortened by Andrew Salmon, 25-May-2011) (Proof shortened by Wolf Lammen, 12-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 19.41.1 | |- F/ x ps |
|
Assertion | 19.41 | |- ( E. x ( ph /\ ps ) <-> ( E. x ph /\ ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.41.1 | |- F/ x ps |
|
2 | 19.40 | |- ( E. x ( ph /\ ps ) -> ( E. x ph /\ E. x ps ) ) |
|
3 | 1 | 19.9 | |- ( E. x ps <-> ps ) |
4 | 3 | anbi2i | |- ( ( E. x ph /\ E. x ps ) <-> ( E. x ph /\ ps ) ) |
5 | 2 4 | sylib | |- ( E. x ( ph /\ ps ) -> ( E. x ph /\ ps ) ) |
6 | pm3.21 | |- ( ps -> ( ph -> ( ph /\ ps ) ) ) |
|
7 | 1 6 | eximd | |- ( ps -> ( E. x ph -> E. x ( ph /\ ps ) ) ) |
8 | 7 | impcom | |- ( ( E. x ph /\ ps ) -> E. x ( ph /\ ps ) ) |
9 | 5 8 | impbii | |- ( E. x ( ph /\ ps ) <-> ( E. x ph /\ ps ) ) |