Metamath Proof Explorer


Theorem 19.41

Description: Theorem 19.41 of Margaris p. 90. See 19.41v for a version requiring fewer axioms. (Contributed by NM, 14-May-1993) (Proof shortened by Andrew Salmon, 25-May-2011) (Proof shortened by Wolf Lammen, 12-Jan-2018)

Ref Expression
Hypothesis 19.41.1
|- F/ x ps
Assertion 19.41
|- ( E. x ( ph /\ ps ) <-> ( E. x ph /\ ps ) )

Proof

Step Hyp Ref Expression
1 19.41.1
 |-  F/ x ps
2 19.40
 |-  ( E. x ( ph /\ ps ) -> ( E. x ph /\ E. x ps ) )
3 1 19.9
 |-  ( E. x ps <-> ps )
4 3 anbi2i
 |-  ( ( E. x ph /\ E. x ps ) <-> ( E. x ph /\ ps ) )
5 2 4 sylib
 |-  ( E. x ( ph /\ ps ) -> ( E. x ph /\ ps ) )
6 pm3.21
 |-  ( ps -> ( ph -> ( ph /\ ps ) ) )
7 1 6 eximd
 |-  ( ps -> ( E. x ph -> E. x ( ph /\ ps ) ) )
8 7 impcom
 |-  ( ( E. x ph /\ ps ) -> E. x ( ph /\ ps ) )
9 5 8 impbii
 |-  ( E. x ( ph /\ ps ) <-> ( E. x ph /\ ps ) )