Metamath Proof Explorer


Theorem 19.42

Description: Theorem 19.42 of Margaris p. 90. See 19.42v for a version requiring fewer axioms. See exan for an immediate version. (Contributed by NM, 18-Aug-1993)

Ref Expression
Hypothesis 19.42.1
|- F/ x ph
Assertion 19.42
|- ( E. x ( ph /\ ps ) <-> ( ph /\ E. x ps ) )

Proof

Step Hyp Ref Expression
1 19.42.1
 |-  F/ x ph
2 1 19.41
 |-  ( E. x ( ps /\ ph ) <-> ( E. x ps /\ ph ) )
3 exancom
 |-  ( E. x ( ph /\ ps ) <-> E. x ( ps /\ ph ) )
4 ancom
 |-  ( ( ph /\ E. x ps ) <-> ( E. x ps /\ ph ) )
5 2 3 4 3bitr4i
 |-  ( E. x ( ph /\ ps ) <-> ( ph /\ E. x ps ) )