Metamath Proof Explorer


Theorem 19.8aw

Description: If a wff is true, it is true for at least one instance. This is to 19.8a what spw is to sp . (Contributed by SN, 26-Sep-2024)

Ref Expression
Hypothesis 19.8aw.1
|- ( x = y -> ( ph <-> ps ) )
Assertion 19.8aw
|- ( ph -> E. x ph )

Proof

Step Hyp Ref Expression
1 19.8aw.1
 |-  ( x = y -> ( ph <-> ps ) )
2 alnex
 |-  ( A. x -. ph <-> -. E. x ph )
3 1 notbid
 |-  ( x = y -> ( -. ph <-> -. ps ) )
4 3 spw
 |-  ( A. x -. ph -> -. ph )
5 2 4 sylbir
 |-  ( -. E. x ph -> -. ph )
6 5 con4i
 |-  ( ph -> E. x ph )