Metamath Proof Explorer


Theorem 19prm

Description: 19 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 19prm
|- ; 1 9 e. Prime

Proof

Step Hyp Ref Expression
1 1nn0
 |-  1 e. NN0
2 9nn
 |-  9 e. NN
3 1 2 decnncl
 |-  ; 1 9 e. NN
4 1nn
 |-  1 e. NN
5 9nn0
 |-  9 e. NN0
6 1lt10
 |-  1 < ; 1 0
7 4 5 1 6 declti
 |-  1 < ; 1 9
8 4nn0
 |-  4 e. NN0
9 4t2e8
 |-  ( 4 x. 2 ) = 8
10 df-9
 |-  9 = ( 8 + 1 )
11 1 8 9 10 dec2dvds
 |-  -. 2 || ; 1 9
12 3nn
 |-  3 e. NN
13 6nn0
 |-  6 e. NN0
14 8nn0
 |-  8 e. NN0
15 8p1e9
 |-  ( 8 + 1 ) = 9
16 6cn
 |-  6 e. CC
17 3cn
 |-  3 e. CC
18 6t3e18
 |-  ( 6 x. 3 ) = ; 1 8
19 16 17 18 mulcomli
 |-  ( 3 x. 6 ) = ; 1 8
20 1 14 15 19 decsuc
 |-  ( ( 3 x. 6 ) + 1 ) = ; 1 9
21 1lt3
 |-  1 < 3
22 12 13 4 20 21 ndvdsi
 |-  -. 3 || ; 1 9
23 2nn0
 |-  2 e. NN0
24 5nn0
 |-  5 e. NN0
25 9lt10
 |-  9 < ; 1 0
26 1lt2
 |-  1 < 2
27 1 23 5 24 25 26 decltc
 |-  ; 1 9 < ; 2 5
28 3 7 11 22 27 prmlem1
 |-  ; 1 9 e. Prime