Description: Lemma for 1arith . (Contributed by Mario Carneiro, 30-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 1arith.1 | |- M = ( n e. NN |-> ( p e. Prime |-> ( p pCnt n ) ) ) |
|
| Assertion | 1arithlem1 | |- ( N e. NN -> ( M ` N ) = ( p e. Prime |-> ( p pCnt N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1arith.1 | |- M = ( n e. NN |-> ( p e. Prime |-> ( p pCnt n ) ) ) |
|
| 2 | oveq2 | |- ( n = N -> ( p pCnt n ) = ( p pCnt N ) ) |
|
| 3 | 2 | mpteq2dv | |- ( n = N -> ( p e. Prime |-> ( p pCnt n ) ) = ( p e. Prime |-> ( p pCnt N ) ) ) |
| 4 | prmex | |- Prime e. _V |
|
| 5 | 4 | mptex | |- ( p e. Prime |-> ( p pCnt N ) ) e. _V |
| 6 | 3 1 5 | fvmpt | |- ( N e. NN -> ( M ` N ) = ( p e. Prime |-> ( p pCnt N ) ) ) |