Description: Lemma for 1arith . (Contributed by Mario Carneiro, 30-May-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 1arith.1 | |- M = ( n e. NN |-> ( p e. Prime |-> ( p pCnt n ) ) ) |
|
Assertion | 1arithlem1 | |- ( N e. NN -> ( M ` N ) = ( p e. Prime |-> ( p pCnt N ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1arith.1 | |- M = ( n e. NN |-> ( p e. Prime |-> ( p pCnt n ) ) ) |
|
2 | oveq2 | |- ( n = N -> ( p pCnt n ) = ( p pCnt N ) ) |
|
3 | 2 | mpteq2dv | |- ( n = N -> ( p e. Prime |-> ( p pCnt n ) ) = ( p e. Prime |-> ( p pCnt N ) ) ) |
4 | prmex | |- Prime e. _V |
|
5 | 4 | mptex | |- ( p e. Prime |-> ( p pCnt N ) ) e. _V |
6 | 3 1 5 | fvmpt | |- ( N e. NN -> ( M ` N ) = ( p e. Prime |-> ( p pCnt N ) ) ) |