| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1arith.1 |  |-  M = ( n e. NN |-> ( p e. Prime |-> ( p pCnt n ) ) ) | 
						
							| 2 | 1 | 1arithlem1 |  |-  ( N e. NN -> ( M ` N ) = ( p e. Prime |-> ( p pCnt N ) ) ) | 
						
							| 3 | 2 | fveq1d |  |-  ( N e. NN -> ( ( M ` N ) ` P ) = ( ( p e. Prime |-> ( p pCnt N ) ) ` P ) ) | 
						
							| 4 |  | oveq1 |  |-  ( p = P -> ( p pCnt N ) = ( P pCnt N ) ) | 
						
							| 5 |  | eqid |  |-  ( p e. Prime |-> ( p pCnt N ) ) = ( p e. Prime |-> ( p pCnt N ) ) | 
						
							| 6 |  | ovex |  |-  ( P pCnt N ) e. _V | 
						
							| 7 | 4 5 6 | fvmpt |  |-  ( P e. Prime -> ( ( p e. Prime |-> ( p pCnt N ) ) ` P ) = ( P pCnt N ) ) | 
						
							| 8 | 3 7 | sylan9eq |  |-  ( ( N e. NN /\ P e. Prime ) -> ( ( M ` N ) ` P ) = ( P pCnt N ) ) |