Step |
Hyp |
Ref |
Expression |
1 |
|
1arith.1 |
|- M = ( n e. NN |-> ( p e. Prime |-> ( p pCnt n ) ) ) |
2 |
1
|
1arithlem1 |
|- ( N e. NN -> ( M ` N ) = ( p e. Prime |-> ( p pCnt N ) ) ) |
3 |
2
|
fveq1d |
|- ( N e. NN -> ( ( M ` N ) ` P ) = ( ( p e. Prime |-> ( p pCnt N ) ) ` P ) ) |
4 |
|
oveq1 |
|- ( p = P -> ( p pCnt N ) = ( P pCnt N ) ) |
5 |
|
eqid |
|- ( p e. Prime |-> ( p pCnt N ) ) = ( p e. Prime |-> ( p pCnt N ) ) |
6 |
|
ovex |
|- ( P pCnt N ) e. _V |
7 |
4 5 6
|
fvmpt |
|- ( P e. Prime -> ( ( p e. Prime |-> ( p pCnt N ) ) ` P ) = ( P pCnt N ) ) |
8 |
3 7
|
sylan9eq |
|- ( ( N e. NN /\ P e. Prime ) -> ( ( M ` N ) ` P ) = ( P pCnt N ) ) |