Description: Lemma for 1arith . (Contributed by Mario Carneiro, 30-May-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 1arith.1 | |- M = ( n e. NN |-> ( p e. Prime |-> ( p pCnt n ) ) ) |
|
Assertion | 1arithlem3 | |- ( N e. NN -> ( M ` N ) : Prime --> NN0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1arith.1 | |- M = ( n e. NN |-> ( p e. Prime |-> ( p pCnt n ) ) ) |
|
2 | 1 | 1arithlem1 | |- ( N e. NN -> ( M ` N ) = ( p e. Prime |-> ( p pCnt N ) ) ) |
3 | pccl | |- ( ( p e. Prime /\ N e. NN ) -> ( p pCnt N ) e. NN0 ) |
|
4 | 3 | ancoms | |- ( ( N e. NN /\ p e. Prime ) -> ( p pCnt N ) e. NN0 ) |
5 | 2 4 | fmpt3d | |- ( N e. NN -> ( M ` N ) : Prime --> NN0 ) |