Metamath Proof Explorer


Theorem 1arithlem3

Description: Lemma for 1arith . (Contributed by Mario Carneiro, 30-May-2014)

Ref Expression
Hypothesis 1arith.1
|- M = ( n e. NN |-> ( p e. Prime |-> ( p pCnt n ) ) )
Assertion 1arithlem3
|- ( N e. NN -> ( M ` N ) : Prime --> NN0 )

Proof

Step Hyp Ref Expression
1 1arith.1
 |-  M = ( n e. NN |-> ( p e. Prime |-> ( p pCnt n ) ) )
2 1 1arithlem1
 |-  ( N e. NN -> ( M ` N ) = ( p e. Prime |-> ( p pCnt N ) ) )
3 pccl
 |-  ( ( p e. Prime /\ N e. NN ) -> ( p pCnt N ) e. NN0 )
4 3 ancoms
 |-  ( ( N e. NN /\ p e. Prime ) -> ( p pCnt N ) e. NN0 )
5 2 4 fmpt3d
 |-  ( N e. NN -> ( M ` N ) : Prime --> NN0 )