Step |
Hyp |
Ref |
Expression |
1 |
|
1arith.1 |
|- M = ( n e. NN |-> ( p e. Prime |-> ( p pCnt n ) ) ) |
2 |
|
1arithlem4.2 |
|- G = ( y e. NN |-> if ( y e. Prime , ( y ^ ( F ` y ) ) , 1 ) ) |
3 |
|
1arithlem4.3 |
|- ( ph -> F : Prime --> NN0 ) |
4 |
|
1arithlem4.4 |
|- ( ph -> N e. NN ) |
5 |
|
1arithlem4.5 |
|- ( ( ph /\ ( q e. Prime /\ N <_ q ) ) -> ( F ` q ) = 0 ) |
6 |
3
|
ffvelrnda |
|- ( ( ph /\ y e. Prime ) -> ( F ` y ) e. NN0 ) |
7 |
6
|
ralrimiva |
|- ( ph -> A. y e. Prime ( F ` y ) e. NN0 ) |
8 |
2 7
|
pcmptcl |
|- ( ph -> ( G : NN --> NN /\ seq 1 ( x. , G ) : NN --> NN ) ) |
9 |
8
|
simprd |
|- ( ph -> seq 1 ( x. , G ) : NN --> NN ) |
10 |
9 4
|
ffvelrnd |
|- ( ph -> ( seq 1 ( x. , G ) ` N ) e. NN ) |
11 |
1
|
1arithlem2 |
|- ( ( ( seq 1 ( x. , G ) ` N ) e. NN /\ q e. Prime ) -> ( ( M ` ( seq 1 ( x. , G ) ` N ) ) ` q ) = ( q pCnt ( seq 1 ( x. , G ) ` N ) ) ) |
12 |
10 11
|
sylan |
|- ( ( ph /\ q e. Prime ) -> ( ( M ` ( seq 1 ( x. , G ) ` N ) ) ` q ) = ( q pCnt ( seq 1 ( x. , G ) ` N ) ) ) |
13 |
7
|
adantr |
|- ( ( ph /\ q e. Prime ) -> A. y e. Prime ( F ` y ) e. NN0 ) |
14 |
4
|
adantr |
|- ( ( ph /\ q e. Prime ) -> N e. NN ) |
15 |
|
simpr |
|- ( ( ph /\ q e. Prime ) -> q e. Prime ) |
16 |
|
fveq2 |
|- ( y = q -> ( F ` y ) = ( F ` q ) ) |
17 |
2 13 14 15 16
|
pcmpt |
|- ( ( ph /\ q e. Prime ) -> ( q pCnt ( seq 1 ( x. , G ) ` N ) ) = if ( q <_ N , ( F ` q ) , 0 ) ) |
18 |
14
|
nnred |
|- ( ( ph /\ q e. Prime ) -> N e. RR ) |
19 |
|
prmz |
|- ( q e. Prime -> q e. ZZ ) |
20 |
19
|
zred |
|- ( q e. Prime -> q e. RR ) |
21 |
20
|
adantl |
|- ( ( ph /\ q e. Prime ) -> q e. RR ) |
22 |
5
|
anassrs |
|- ( ( ( ph /\ q e. Prime ) /\ N <_ q ) -> ( F ` q ) = 0 ) |
23 |
22
|
ifeq2d |
|- ( ( ( ph /\ q e. Prime ) /\ N <_ q ) -> if ( q <_ N , ( F ` q ) , ( F ` q ) ) = if ( q <_ N , ( F ` q ) , 0 ) ) |
24 |
|
ifid |
|- if ( q <_ N , ( F ` q ) , ( F ` q ) ) = ( F ` q ) |
25 |
23 24
|
eqtr3di |
|- ( ( ( ph /\ q e. Prime ) /\ N <_ q ) -> if ( q <_ N , ( F ` q ) , 0 ) = ( F ` q ) ) |
26 |
|
iftrue |
|- ( q <_ N -> if ( q <_ N , ( F ` q ) , 0 ) = ( F ` q ) ) |
27 |
26
|
adantl |
|- ( ( ( ph /\ q e. Prime ) /\ q <_ N ) -> if ( q <_ N , ( F ` q ) , 0 ) = ( F ` q ) ) |
28 |
18 21 25 27
|
lecasei |
|- ( ( ph /\ q e. Prime ) -> if ( q <_ N , ( F ` q ) , 0 ) = ( F ` q ) ) |
29 |
12 17 28
|
3eqtrrd |
|- ( ( ph /\ q e. Prime ) -> ( F ` q ) = ( ( M ` ( seq 1 ( x. , G ) ` N ) ) ` q ) ) |
30 |
29
|
ralrimiva |
|- ( ph -> A. q e. Prime ( F ` q ) = ( ( M ` ( seq 1 ( x. , G ) ` N ) ) ` q ) ) |
31 |
1
|
1arithlem3 |
|- ( ( seq 1 ( x. , G ) ` N ) e. NN -> ( M ` ( seq 1 ( x. , G ) ` N ) ) : Prime --> NN0 ) |
32 |
10 31
|
syl |
|- ( ph -> ( M ` ( seq 1 ( x. , G ) ` N ) ) : Prime --> NN0 ) |
33 |
|
ffn |
|- ( F : Prime --> NN0 -> F Fn Prime ) |
34 |
|
ffn |
|- ( ( M ` ( seq 1 ( x. , G ) ` N ) ) : Prime --> NN0 -> ( M ` ( seq 1 ( x. , G ) ` N ) ) Fn Prime ) |
35 |
|
eqfnfv |
|- ( ( F Fn Prime /\ ( M ` ( seq 1 ( x. , G ) ` N ) ) Fn Prime ) -> ( F = ( M ` ( seq 1 ( x. , G ) ` N ) ) <-> A. q e. Prime ( F ` q ) = ( ( M ` ( seq 1 ( x. , G ) ` N ) ) ` q ) ) ) |
36 |
33 34 35
|
syl2an |
|- ( ( F : Prime --> NN0 /\ ( M ` ( seq 1 ( x. , G ) ` N ) ) : Prime --> NN0 ) -> ( F = ( M ` ( seq 1 ( x. , G ) ` N ) ) <-> A. q e. Prime ( F ` q ) = ( ( M ` ( seq 1 ( x. , G ) ` N ) ) ` q ) ) ) |
37 |
3 32 36
|
syl2anc |
|- ( ph -> ( F = ( M ` ( seq 1 ( x. , G ) ` N ) ) <-> A. q e. Prime ( F ` q ) = ( ( M ` ( seq 1 ( x. , G ) ` N ) ) ` q ) ) ) |
38 |
30 37
|
mpbird |
|- ( ph -> F = ( M ` ( seq 1 ( x. , G ) ` N ) ) ) |
39 |
|
fveq2 |
|- ( x = ( seq 1 ( x. , G ) ` N ) -> ( M ` x ) = ( M ` ( seq 1 ( x. , G ) ` N ) ) ) |
40 |
39
|
rspceeqv |
|- ( ( ( seq 1 ( x. , G ) ` N ) e. NN /\ F = ( M ` ( seq 1 ( x. , G ) ` N ) ) ) -> E. x e. NN F = ( M ` x ) ) |
41 |
10 38 40
|
syl2anc |
|- ( ph -> E. x e. NN F = ( M ` x ) ) |