Step |
Hyp |
Ref |
Expression |
1 |
|
neg1cn |
|- -u 1 e. CC |
2 |
|
neg1ne0 |
|- -u 1 =/= 0 |
3 |
|
2re |
|- 2 e. RR |
4 |
|
3nn |
|- 3 e. NN |
5 |
|
nndivre |
|- ( ( 2 e. RR /\ 3 e. NN ) -> ( 2 / 3 ) e. RR ) |
6 |
3 4 5
|
mp2an |
|- ( 2 / 3 ) e. RR |
7 |
6
|
recni |
|- ( 2 / 3 ) e. CC |
8 |
|
cxpef |
|- ( ( -u 1 e. CC /\ -u 1 =/= 0 /\ ( 2 / 3 ) e. CC ) -> ( -u 1 ^c ( 2 / 3 ) ) = ( exp ` ( ( 2 / 3 ) x. ( log ` -u 1 ) ) ) ) |
9 |
1 2 7 8
|
mp3an |
|- ( -u 1 ^c ( 2 / 3 ) ) = ( exp ` ( ( 2 / 3 ) x. ( log ` -u 1 ) ) ) |
10 |
|
logm1 |
|- ( log ` -u 1 ) = ( _i x. _pi ) |
11 |
10
|
oveq2i |
|- ( ( 2 / 3 ) x. ( log ` -u 1 ) ) = ( ( 2 / 3 ) x. ( _i x. _pi ) ) |
12 |
|
ax-icn |
|- _i e. CC |
13 |
|
pire |
|- _pi e. RR |
14 |
13
|
recni |
|- _pi e. CC |
15 |
7 12 14
|
mul12i |
|- ( ( 2 / 3 ) x. ( _i x. _pi ) ) = ( _i x. ( ( 2 / 3 ) x. _pi ) ) |
16 |
11 15
|
eqtri |
|- ( ( 2 / 3 ) x. ( log ` -u 1 ) ) = ( _i x. ( ( 2 / 3 ) x. _pi ) ) |
17 |
16
|
fveq2i |
|- ( exp ` ( ( 2 / 3 ) x. ( log ` -u 1 ) ) ) = ( exp ` ( _i x. ( ( 2 / 3 ) x. _pi ) ) ) |
18 |
|
6nn |
|- 6 e. NN |
19 |
|
nndivre |
|- ( ( _pi e. RR /\ 6 e. NN ) -> ( _pi / 6 ) e. RR ) |
20 |
13 18 19
|
mp2an |
|- ( _pi / 6 ) e. RR |
21 |
20
|
recni |
|- ( _pi / 6 ) e. CC |
22 |
|
coshalfpip |
|- ( ( _pi / 6 ) e. CC -> ( cos ` ( ( _pi / 2 ) + ( _pi / 6 ) ) ) = -u ( sin ` ( _pi / 6 ) ) ) |
23 |
21 22
|
ax-mp |
|- ( cos ` ( ( _pi / 2 ) + ( _pi / 6 ) ) ) = -u ( sin ` ( _pi / 6 ) ) |
24 |
|
2cn |
|- 2 e. CC |
25 |
|
2ne0 |
|- 2 =/= 0 |
26 |
|
divrec2 |
|- ( ( _pi e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( _pi / 2 ) = ( ( 1 / 2 ) x. _pi ) ) |
27 |
14 24 25 26
|
mp3an |
|- ( _pi / 2 ) = ( ( 1 / 2 ) x. _pi ) |
28 |
|
6cn |
|- 6 e. CC |
29 |
18
|
nnne0i |
|- 6 =/= 0 |
30 |
|
divrec2 |
|- ( ( _pi e. CC /\ 6 e. CC /\ 6 =/= 0 ) -> ( _pi / 6 ) = ( ( 1 / 6 ) x. _pi ) ) |
31 |
14 28 29 30
|
mp3an |
|- ( _pi / 6 ) = ( ( 1 / 6 ) x. _pi ) |
32 |
27 31
|
oveq12i |
|- ( ( _pi / 2 ) + ( _pi / 6 ) ) = ( ( ( 1 / 2 ) x. _pi ) + ( ( 1 / 6 ) x. _pi ) ) |
33 |
24 25
|
reccli |
|- ( 1 / 2 ) e. CC |
34 |
28 29
|
reccli |
|- ( 1 / 6 ) e. CC |
35 |
33 34 14
|
adddiri |
|- ( ( ( 1 / 2 ) + ( 1 / 6 ) ) x. _pi ) = ( ( ( 1 / 2 ) x. _pi ) + ( ( 1 / 6 ) x. _pi ) ) |
36 |
|
halfpm6th |
|- ( ( ( 1 / 2 ) - ( 1 / 6 ) ) = ( 1 / 3 ) /\ ( ( 1 / 2 ) + ( 1 / 6 ) ) = ( 2 / 3 ) ) |
37 |
36
|
simpri |
|- ( ( 1 / 2 ) + ( 1 / 6 ) ) = ( 2 / 3 ) |
38 |
37
|
oveq1i |
|- ( ( ( 1 / 2 ) + ( 1 / 6 ) ) x. _pi ) = ( ( 2 / 3 ) x. _pi ) |
39 |
32 35 38
|
3eqtr2i |
|- ( ( _pi / 2 ) + ( _pi / 6 ) ) = ( ( 2 / 3 ) x. _pi ) |
40 |
39
|
fveq2i |
|- ( cos ` ( ( _pi / 2 ) + ( _pi / 6 ) ) ) = ( cos ` ( ( 2 / 3 ) x. _pi ) ) |
41 |
|
sincos6thpi |
|- ( ( sin ` ( _pi / 6 ) ) = ( 1 / 2 ) /\ ( cos ` ( _pi / 6 ) ) = ( ( sqrt ` 3 ) / 2 ) ) |
42 |
41
|
simpli |
|- ( sin ` ( _pi / 6 ) ) = ( 1 / 2 ) |
43 |
42
|
negeqi |
|- -u ( sin ` ( _pi / 6 ) ) = -u ( 1 / 2 ) |
44 |
|
ax-1cn |
|- 1 e. CC |
45 |
|
divneg |
|- ( ( 1 e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> -u ( 1 / 2 ) = ( -u 1 / 2 ) ) |
46 |
44 24 25 45
|
mp3an |
|- -u ( 1 / 2 ) = ( -u 1 / 2 ) |
47 |
43 46
|
eqtri |
|- -u ( sin ` ( _pi / 6 ) ) = ( -u 1 / 2 ) |
48 |
23 40 47
|
3eqtr3i |
|- ( cos ` ( ( 2 / 3 ) x. _pi ) ) = ( -u 1 / 2 ) |
49 |
|
sinhalfpip |
|- ( ( _pi / 6 ) e. CC -> ( sin ` ( ( _pi / 2 ) + ( _pi / 6 ) ) ) = ( cos ` ( _pi / 6 ) ) ) |
50 |
21 49
|
ax-mp |
|- ( sin ` ( ( _pi / 2 ) + ( _pi / 6 ) ) ) = ( cos ` ( _pi / 6 ) ) |
51 |
39
|
fveq2i |
|- ( sin ` ( ( _pi / 2 ) + ( _pi / 6 ) ) ) = ( sin ` ( ( 2 / 3 ) x. _pi ) ) |
52 |
41
|
simpri |
|- ( cos ` ( _pi / 6 ) ) = ( ( sqrt ` 3 ) / 2 ) |
53 |
50 51 52
|
3eqtr3i |
|- ( sin ` ( ( 2 / 3 ) x. _pi ) ) = ( ( sqrt ` 3 ) / 2 ) |
54 |
53
|
oveq2i |
|- ( _i x. ( sin ` ( ( 2 / 3 ) x. _pi ) ) ) = ( _i x. ( ( sqrt ` 3 ) / 2 ) ) |
55 |
|
3re |
|- 3 e. RR |
56 |
|
3nn0 |
|- 3 e. NN0 |
57 |
56
|
nn0ge0i |
|- 0 <_ 3 |
58 |
|
resqrtcl |
|- ( ( 3 e. RR /\ 0 <_ 3 ) -> ( sqrt ` 3 ) e. RR ) |
59 |
55 57 58
|
mp2an |
|- ( sqrt ` 3 ) e. RR |
60 |
59
|
recni |
|- ( sqrt ` 3 ) e. CC |
61 |
12 60 24 25
|
divassi |
|- ( ( _i x. ( sqrt ` 3 ) ) / 2 ) = ( _i x. ( ( sqrt ` 3 ) / 2 ) ) |
62 |
54 61
|
eqtr4i |
|- ( _i x. ( sin ` ( ( 2 / 3 ) x. _pi ) ) ) = ( ( _i x. ( sqrt ` 3 ) ) / 2 ) |
63 |
48 62
|
oveq12i |
|- ( ( cos ` ( ( 2 / 3 ) x. _pi ) ) + ( _i x. ( sin ` ( ( 2 / 3 ) x. _pi ) ) ) ) = ( ( -u 1 / 2 ) + ( ( _i x. ( sqrt ` 3 ) ) / 2 ) ) |
64 |
7 14
|
mulcli |
|- ( ( 2 / 3 ) x. _pi ) e. CC |
65 |
|
efival |
|- ( ( ( 2 / 3 ) x. _pi ) e. CC -> ( exp ` ( _i x. ( ( 2 / 3 ) x. _pi ) ) ) = ( ( cos ` ( ( 2 / 3 ) x. _pi ) ) + ( _i x. ( sin ` ( ( 2 / 3 ) x. _pi ) ) ) ) ) |
66 |
64 65
|
ax-mp |
|- ( exp ` ( _i x. ( ( 2 / 3 ) x. _pi ) ) ) = ( ( cos ` ( ( 2 / 3 ) x. _pi ) ) + ( _i x. ( sin ` ( ( 2 / 3 ) x. _pi ) ) ) ) |
67 |
12 60
|
mulcli |
|- ( _i x. ( sqrt ` 3 ) ) e. CC |
68 |
1 67 24 25
|
divdiri |
|- ( ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) / 2 ) = ( ( -u 1 / 2 ) + ( ( _i x. ( sqrt ` 3 ) ) / 2 ) ) |
69 |
63 66 68
|
3eqtr4i |
|- ( exp ` ( _i x. ( ( 2 / 3 ) x. _pi ) ) ) = ( ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) / 2 ) |
70 |
9 17 69
|
3eqtri |
|- ( -u 1 ^c ( 2 / 3 ) ) = ( ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) / 2 ) |
71 |
|
1z |
|- 1 e. ZZ |
72 |
|
root1cj |
|- ( ( 3 e. NN /\ 1 e. ZZ ) -> ( * ` ( ( -u 1 ^c ( 2 / 3 ) ) ^ 1 ) ) = ( ( -u 1 ^c ( 2 / 3 ) ) ^ ( 3 - 1 ) ) ) |
73 |
4 71 72
|
mp2an |
|- ( * ` ( ( -u 1 ^c ( 2 / 3 ) ) ^ 1 ) ) = ( ( -u 1 ^c ( 2 / 3 ) ) ^ ( 3 - 1 ) ) |
74 |
|
cxpcl |
|- ( ( -u 1 e. CC /\ ( 2 / 3 ) e. CC ) -> ( -u 1 ^c ( 2 / 3 ) ) e. CC ) |
75 |
1 7 74
|
mp2an |
|- ( -u 1 ^c ( 2 / 3 ) ) e. CC |
76 |
|
exp1 |
|- ( ( -u 1 ^c ( 2 / 3 ) ) e. CC -> ( ( -u 1 ^c ( 2 / 3 ) ) ^ 1 ) = ( -u 1 ^c ( 2 / 3 ) ) ) |
77 |
75 76
|
ax-mp |
|- ( ( -u 1 ^c ( 2 / 3 ) ) ^ 1 ) = ( -u 1 ^c ( 2 / 3 ) ) |
78 |
77 70
|
eqtri |
|- ( ( -u 1 ^c ( 2 / 3 ) ) ^ 1 ) = ( ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) / 2 ) |
79 |
78
|
fveq2i |
|- ( * ` ( ( -u 1 ^c ( 2 / 3 ) ) ^ 1 ) ) = ( * ` ( ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) / 2 ) ) |
80 |
1 67
|
addcli |
|- ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) e. CC |
81 |
80 24
|
cjdivi |
|- ( 2 =/= 0 -> ( * ` ( ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) / 2 ) ) = ( ( * ` ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) ) / ( * ` 2 ) ) ) |
82 |
25 81
|
ax-mp |
|- ( * ` ( ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) / 2 ) ) = ( ( * ` ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) ) / ( * ` 2 ) ) |
83 |
1 67
|
cjaddi |
|- ( * ` ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) ) = ( ( * ` -u 1 ) + ( * ` ( _i x. ( sqrt ` 3 ) ) ) ) |
84 |
|
neg1rr |
|- -u 1 e. RR |
85 |
|
cjre |
|- ( -u 1 e. RR -> ( * ` -u 1 ) = -u 1 ) |
86 |
84 85
|
ax-mp |
|- ( * ` -u 1 ) = -u 1 |
87 |
12 60
|
cjmuli |
|- ( * ` ( _i x. ( sqrt ` 3 ) ) ) = ( ( * ` _i ) x. ( * ` ( sqrt ` 3 ) ) ) |
88 |
|
cji |
|- ( * ` _i ) = -u _i |
89 |
|
cjre |
|- ( ( sqrt ` 3 ) e. RR -> ( * ` ( sqrt ` 3 ) ) = ( sqrt ` 3 ) ) |
90 |
59 89
|
ax-mp |
|- ( * ` ( sqrt ` 3 ) ) = ( sqrt ` 3 ) |
91 |
88 90
|
oveq12i |
|- ( ( * ` _i ) x. ( * ` ( sqrt ` 3 ) ) ) = ( -u _i x. ( sqrt ` 3 ) ) |
92 |
12 60
|
mulneg1i |
|- ( -u _i x. ( sqrt ` 3 ) ) = -u ( _i x. ( sqrt ` 3 ) ) |
93 |
87 91 92
|
3eqtri |
|- ( * ` ( _i x. ( sqrt ` 3 ) ) ) = -u ( _i x. ( sqrt ` 3 ) ) |
94 |
86 93
|
oveq12i |
|- ( ( * ` -u 1 ) + ( * ` ( _i x. ( sqrt ` 3 ) ) ) ) = ( -u 1 + -u ( _i x. ( sqrt ` 3 ) ) ) |
95 |
1 67
|
negsubi |
|- ( -u 1 + -u ( _i x. ( sqrt ` 3 ) ) ) = ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) |
96 |
83 94 95
|
3eqtri |
|- ( * ` ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) ) = ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) |
97 |
|
cjre |
|- ( 2 e. RR -> ( * ` 2 ) = 2 ) |
98 |
3 97
|
ax-mp |
|- ( * ` 2 ) = 2 |
99 |
96 98
|
oveq12i |
|- ( ( * ` ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) ) / ( * ` 2 ) ) = ( ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) / 2 ) |
100 |
79 82 99
|
3eqtri |
|- ( * ` ( ( -u 1 ^c ( 2 / 3 ) ) ^ 1 ) ) = ( ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) / 2 ) |
101 |
|
3m1e2 |
|- ( 3 - 1 ) = 2 |
102 |
101
|
oveq2i |
|- ( ( -u 1 ^c ( 2 / 3 ) ) ^ ( 3 - 1 ) ) = ( ( -u 1 ^c ( 2 / 3 ) ) ^ 2 ) |
103 |
73 100 102
|
3eqtr3ri |
|- ( ( -u 1 ^c ( 2 / 3 ) ) ^ 2 ) = ( ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) / 2 ) |
104 |
70 103
|
pm3.2i |
|- ( ( -u 1 ^c ( 2 / 3 ) ) = ( ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) / 2 ) /\ ( ( -u 1 ^c ( 2 / 3 ) ) ^ 2 ) = ( ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) / 2 ) ) |